The receptor-like recognition behavior of the GM1 ganglioside has been examined theoretically in terms of conformational and binding properties. Modeling was conducted at two limiting conditions of dielectric constant in order to determine sensitivity to scaling of coulombic interactions. A systematic conformational search of the GM1 oligosaccharide in the absence of explicit solvent molecules indicates that there are many inherently low energy conformational states. Up to 39 conformers were found with energies within 5 kcal/mole of the observed lowest energy conformer. Using a dielectric constant of 80, a systematic search of sodium binding sites on GM1 identified 37 sites where a positively charged group might bind, while at least 12 sites were identified using a dielectric constant of 1. Notably important binding sites include pockets formed by the proximity of glycosidic (O1), sugar ring (O5), and exocyclic methylene hydroxyl (OH6) oxygens on the sugars. The oxygens of acetyl groups attached to sugars also contribute to the binding. Direct coordination with the carboxylate of sialic acid is not a prerequisite for cationic binding. The large number of conformational states and binding sites for the GM1 oligosaccharide are paradoxical to the specific recognition behavior of the molecule. This paradox can be explained in terms of bridging ligands, which are found from molecular dynamics to be capable of stabilizing molecular conformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.