Development of strategies for mitigating the severity of a new influenza pandemic is now a top global public health priority. Influenza prevention and containment strategies can be considered under the broad categories of antiviral, vaccine and non-pharmaceutical (case isolation, household quarantine, school or workplace closure, restrictions on travel) measures. Mathematical models are powerful tools for exploring this complex landscape of intervention strategies and quantifying the potential costs and benefits of different options. Here we use a large-scale epidemic simulation to examine intervention options should initial containment of a novel influenza outbreak fail, using Great Britain and the United States as examples. We find that border restrictions and/or internal travel restrictions are unlikely to delay spread by more than 2-3 weeks unless more than 99% effective. School closure during the peak of a pandemic can reduce peak attack rates by up to 40%, but has little impact on overall attack rates, whereas case isolation or household quarantine could have a significant impact, if feasible. Treatment of clinical cases can reduce transmission, but only if antivirals are given within a day of symptoms starting. Given enough drugs for 50% of the population, household-based prophylaxis coupled with reactive school closure could reduce clinical attack rates by 40-50%. More widespread prophylaxis would be even more logistically challenging but might reduce attack rates by over 75%. Vaccine stockpiled in advance of a pandemic could significantly reduce attack rates even if of low efficacy. Estimates of policy effectiveness will change if the characteristics of a future pandemic strain differ substantially from those seen in past pandemics.
The interactions of people using public transportation in large metropolitan areas may help spread an influenza epidemic. An agent-based model computer simulation of New York City's (NYC's) five boroughs was developed that incorporated subway ridership into a Susceptible-Exposed-Infected-Recovered disease model framework. The model contains a total of 7,847,465 virtual people. Each person resides in one of the five boroughs of NYC and has a set of socio-demographic characteristics and daily behaviors that include age, sex, employment status, income, occupation, and household location and membership. The model simulates the interactions of subway riders with their workplaces, schools, households, and community activities. It was calibrated using historical data from the 1957-1958 influenza pandemics and from NYC travel surveys. The surveys were necessary to enable inclusion of subway riders into the model. The model results estimate that if influenza did occur in NYC with the characteristics of the 1957-1958 pandemic, 4% of transmissions would occur on the subway. This suggests that interventions targeted at subway riders would be relatively ineffective in containing the epidemic. A number of hypothetical examples demonstrate this feature. This information could prove useful to public health officials planning responses to epidemics.
Agent-based models simulate large-scale social systems. They assign behaviors and activities to “agents” (individuals) within the population being modeled and then allow the agents to interact with the environment and each other in complex simulations. Agent-based models are frequently used to simulate infectious disease outbreaks, among other uses. RTI used and extended an iterative proportional fitting method to generate a synthesized, geospatially explicit, human agent database that represents the US population in the 50 states and the District of Columbia in the year 2000. Each agent is assigned to a household; other agents make up the household occupants. For this database, RTI developed the methods for generating synthesized households and personsassigning agents to schools and workplaces so that complex interactions among agents as they go about their daily activities can be taken into accountgenerating synthesized human agents who occupy group quarters (military bases, college dormitories, prisons, nursing homes).In this report, we describe both the methods used to generate the synthesized population database and the final data structure and data content of the database. This information will provide researchers with the information they need to use the database in developing agent-based models. Portions of the synthesized agent database are available to any user upon request. RTI will extract a portion (a county, region, or state) of the database for users who wish to use this database in their own agent-based models.
Please cite this paper as: Cooley et al. (2010) Protecting health care workers: a pandemic simulation based on Allegheny County. Influenza and Other Respiratory Viruses 4(2), 61–72. Background and Objectives The Advisory Committee on Immunization Practices has identified health care workers (HCWs) as a priority group to receive influenza vaccine. Although the importance of HCW to the health care system is well understood, the potential role of HCW in transmission during an epidemic has not been clearly established. Methods Using a standard SIR (Susceptible–Infected–Recovered) framework similar to previously developed pandemic models, we developed an agent‐based model (ABM) of Allegheny County, PA, that incorporates the key health care system features to simulate the spread of an influenza epidemic and its effect on hospital‐based HCWs. Findings Our simulation runs found the secondary attack rate among unprotected HCWs to be approximately 60% higher (54·3%) as that of all adults (34·1%), which would result in substantial absenteeism and additional risk to HCW families. Understanding how a pandemic may affect HCWs, who must be available to treat infected patients as well as patients with other medical conditions, is crucial to policy makers’ and hospital administrators’ preparedness planning.
The protection of forests is crucial to providing important ecosystem services, such as supplying clean air and water, safeguarding critical habitats for biodiversity, and reducing global greenhouse gas emissions. Despite this importance, global forest loss has steadily increased in recent decades. Protected Areas (PAs) currently account for almost 15% of Earth’s terrestrial surface and protect 5% of global tree cover and were developed as a principal approach to limit the impact of anthropogenic activities on natural, intact ecosystems and habitats. We assess global trends in forest loss inside and outside of PAs, and land cover following this forest loss, using a global map of tree cover loss and global maps of land cover. While forests in PAs experience loss at lower rates than non-protected forests, we find that the temporal trend of forest loss in PAs is markedly similar to that of all forest loss globally. We find that forest loss in PAs is most commonly—and increasingly—followed by shrubland, a broad category that could represent re-growing forest, agricultural fallows, or pasture lands in some regional contexts. Anthropogenic forest loss for agriculture is common in some regions, particularly in the global tropics, while wildfires, pests, and storm blowdown are a significant and consistent cause of forest loss in more northern latitudes, such as the United States, Canada, and Russia. Our study describes a process for screening tree cover loss and agriculture expansion taking place within PAs, and identification of priority targets for further site-specific assessments of threats to PAs. We illustrate an approach for more detailed assessment of forest loss in four case study PAs in Brazil, Indonesia, Democratic Republic of Congo, and the United States.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.