Auger decay of multiple excitons represents a significant obstacle to photonic applications of semiconductor quantum dots (QDs). This nonradiative process is particularly detrimental to the performance of QD-based electroluminescent and lasing devices. Here, we demonstrate that semiconductor quantum shells with an “inverted” QD geometry inhibit Auger recombination, allowing substantial improvements to their multiexciton characteristics. By promoting a spatial separation between multiple excitons, the quantum shell geometry leads to ultralong biexciton lifetimes (>10 ns) and a large biexciton quantum yield. Furthermore, the architecture of quantum shells induces an exciton–exciton repulsion, which splits exciton and biexciton optical transitions, giving rise to an Auger-inactive single-exciton gain mode. In this regime, quantum shells exhibit the longest optical gain lifetime reported for colloidal QDs to date (>6 ns), which makes this geometry an attractive candidate for the development of optically and electrically pumped gain media.
Plasmonics is a rapidly developing field at the boundary of fundamental sciences and device engineering, which exploits the ability of metal nanostructures to concentrate electromagnetic radiation. The principal challenge lies in achieving an efficient conversion of the plasmon-concentrated field into some form of useful energy. To date, a substantial progress has been made within the scientific community in identifying the major pathways of the plasmon energy conversion. Strategies based on the hot electron injection and the near-field energy transfer have already shown promise in a number of proof-of-principle plasmonic architectures. Nevertheless, there are several fundamental questions that need to be addressed in the future to facilitate the transition of plasmonics to a variety of applications in both light amplification and optical detection. Of particular interest is a plasmon-induced resonance energy transfer (PIRET) process that couples the plasmon evanescent field to a semiconductor absorber via dipole-dipole interaction. This relatively unexplored mechanism has emerged as a promising light conversion strategy in the areas of photovoltaics and photocatalysis and represents the main focus of the present minireview. Along these lines, we highlight the key advances in this area and review some of the challenges associated with applications of the PIRET mechanism in nanostructured systems.
Nanoshell quantum dots (QDs) represent a novel class of colloidal semiconductor nanocrystals (NCs), which supports tunable optoelectronic properties over the extended range of particle sizes. Traditionally, the ability to control the bandgap of colloidal semiconductor NCs is limited to small-size nanostructures, where photoinduced charges are confined by Coulomb interactions. A notorious drawback of such a restricted size range concerns the fact that assemblies of smaller nanoparticles tend to exhibit a greater density of interfacial and surface defects. This presents a potential problem for device applications of semiconductor NCs where the charge transport across nanoparticle films is important, as in the case of solar cells, field-effect transistors, and photoelectrochemical devices. The morphology of nanoshell QDs addresses this issue by enabling the quantum-confinement in the shell layer, where two-dimensional excitons can exist, regardless of the total particle size. Such a geometry exhibits one of the lowest surface-to-volume ratios among existing QD architectures and, therefore, could potentially lead to improved charge-transport and multi-exciton characteristics. The expected benefits of the nanoshell architecture were recently demonstrated by a number of reports on the CdSbulk/CdSe nanoshell model system, showing an improved photoconductivity of solids and increased lifetime of multi-exciton populations. Along these lines, this perspective will summarize the recent work on CdSbulk/CdSe nanoshell colloids and discuss the possibility of employing other nanoshell semiconductor combinations in light-harvesting and lasing applications.
Assemblies of metal nanostructures and fluorescent molecules represent a promising platform for the development of biosensing and near-field imaging applications. Typically, the interaction of molecular fluorophores with surface plasmons in metals results in either quenching or enhancement of the dye excitation energy. Here, we demonstrate that fluorescent molecules can also engage in a reversible energy transfer (ET) with proximal metal surfaces, during which quenching of the dye emission via the energy transfer to localized surface plasmons can trigger delayed ET from metal back to the fluorescent molecule. The resulting two-step process leads to the sustained delayed photoluminescence (PL) in metal-conjugated fluorophores, as was demonstrated here through the observation of increased PL lifetime in assemblies of Au nanoparticles and organic dyes (Alexa 488, Cy3.5, and Cy5). The observed enhancement of the PL lifetime in metal-conjugated fluorophores was corroborated by theoretical calculations based on the reverse ET model, suggesting that these processes could be ubiquitous in many other dye− metal assemblies.
Artificial solids of CsPbX3 perovskite nanocrystals (NC) are well known for their promising charge transport characteristics. The long-range diffusion of photoinduced charges in these materials is attributed to the unique electronic structure of CsPbX3 NCs associated with high defect tolerance and a low disorder of excited-state energies. Here, we show that the same set of electronic properties allows CsPbBr3 NC solids to act as superior energy transport materials, which support a long-range diffusion of electrically neutral excitons. By performing time-resolved bulk quenching measurements on halide-treated CsPbBr3 NC films, we observed average exciton diffusion lengths of 52 and 71 nm for I–- and Cl–-treated solids, respectively. Steady-state fluorescence quenching studies have been employed to explain such a large diffusion length as due to a high defect tolerance and a low disorder of exciton energies in CsPbBr3 NC solids. We expect that the demonstrated ability of halide-treated CsPbBr3 NC solids to support a long-range exciton transport could be beneficial for applications in light energy concentration, as was demonstrated in this work through energy transfer measurements in assemblies of perovskite NC donors and CdSe quantum dot acceptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.