Triplex-forming peptide nucleic acids (PNAs) are powerful gene therapy agents that can enhance recombination of short donor DNAs with genomic DNA, leading to targeted and specific correction of disease-causing genetic mutations. Therapeutic use of PNAs is severely limited, however, by challenges in intracellular delivery, particularly in clinically relevant targets such as hematopoietic stem and progenitor cells. Here, we demonstrate efficient and nontoxic PNA-mediated recombination in human CD34(+) cells using poly(lactic-co-glycolic acid) (PLGA) nanoparticles for intracellular oligonucleotide delivery. Treatment of progenitor cells with nanoparticles loaded with PNAs and DNAs targeting the β-globin locus led to levels of site-specific modification in the range of 0.5-1% in a single treatment, without detectable loss in cell viability, resulting in a 60-fold increase in modified and viable cells as compared to nucleofection. As well, the differentiation capacity of the progenitor cells treated with nanoparticles did not change relative to untreated progenitor cells, indicating that nanoparticles are safe and minimally disruptive delivery vectors for PNAs and DNAs to mediate gene modification in human primary cells. This is the first demonstration of the use of biodegradable nanoparticles to deliver genome-editing agents to human primary cells, and provides a strong rationale for systemic delivery of complex nucleic acid mixtures designed for gene correction.
The purpose of this study was to investigate if multi-domain cognitive training, especially robot-assisted training, alters cortical thickness in the brains of elderly participants. A controlled trial was conducted with 85 volunteers without cognitive impairment who were 60 years old or older. Participants were first randomized into two groups. One group consisted of 48 participants who would receive cognitive training and 37 who would not receive training. The cognitive training group was randomly divided into two groups, 24 who received traditional cognitive training and 24 who received robot-assisted cognitive training. The training for both groups consisted of daily 90-min-session, five days a week for a total of 12 weeks. The primary outcome was the changes in cortical thickness. When compared to the control group, both groups who underwent cognitive training demonstrated attenuation of age related cortical thinning in the frontotemporal association cortices. When the robot and the traditional interventions were directly compared, the robot group showed less cortical thinning in the anterior cingulate cortices. Our results suggest that cognitive training can mitigate age-associated structural brain changes in the elderly.Trial RegistrationClnicalTrials.gov NCT01596205
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.