There is a major need for scaffold-based tissue engineered vascular grafts and heart valves with long-term patency and durability to be used in diabetic cardiovascular patients. We hypothesized that diabetes, by virtue of glycoxidation reactions, can directly crosslink implanted scaffolds, drastically altering their properties. In order to investigate the fate of tissue engineered scaffolds in diabetic conditions, we prepared valvular collagen scaffolds and arterial elastin scaffolds by decellularization and implanted them subdermally in diabetic rats. Both types of scaffolds exhibited significant levels of advanced glycation end products (AGEs), chemical crosslinking and stiffening - alterations which are not favorable for cardiovascular tissue engineering. Pre-implantation treatment of collagen and elastin scaffolds with penta-galloyl glucose (PGG), an antioxidant and matrix-binding polyphenol, chemically stabilized the scaffolds, reduced their enzymatic degradation, and protected them from diabetes-related complications by reduction of scaffold-bound AGE levels. PGG-treated scaffolds resisted diabetes-induced crosslinking and stiffening, were protected from calcification, and exhibited controlled remodeling in vivo, thereby supporting future use of diabetes-resistant scaffolds for cardiovascular tissue engineering in patients with diabetes.
In this study, we have mapped the surface charge of wool fibers using chemically specific high-resolution force spectroscopy in order to better understand the dispersion of amino acids in relation to fiber morphology. The inter-surface forces between standard atomic force microscopy (AFM) probe tips (tip radius ~ 50 nm) functionalized with COOH and NH3 terminated alkanethiol self assembling monolayers and the wool surface were used to estimate the surface charge per unit area using linear Poisson-Boltzmann-based electrostatic double layer theory. The positional measurement of nano-scale surface charge showed a correlation between the surface charge and fiber morphology, indicated that basic amino acids are located near the scale edges.
Diabetes is a major risk factor for the progression of vascular disease, contributing to elevated levels of glycoxidation, chronic inflammation and calcification. Tissue engineering emerges as a potential solution for the treatment of vascular diseases however there is a considerable gap in the understanding of how scaffolds and stem cells will perform in patients with diabetes. We hypothesized that adipose tissue-derived stem cells (ASCs) by virtue of their immunosuppressive potential would moderate the diabetes-intensified inflammatory reactions and induce positive construct remodeling. To test this hypothesis, we prepared arterial elastin scaffolds seeded with autologous ASCs and implanted them subdermally in diabetic rats and compared inflammatory markers, macrophage polarization, matrix remodeling, calcification and bone protein expression to control scaffolds implanted with and without cells in nondiabetic rats. ASC-seeded scaffolds exhibited lower levels of CD8+ T-cells and CD68+ pan-macrophages and higher numbers of M2 macrophages, smooth muscle celllike and fibroblast-like cells. Calcification and osteogenic markers were reduced in ASCseeded scaffolds implanted in non-diabetic rats but remained unchanged in diabetes, unless the scaffolds were first pre-treated with penta-galloyl glucose (PGG), a known anti-oxidative elastin-binding polyphenol. In conclusion, autologous ASC seeding in elastin scaffolds is effective in combating diabetes-related complications. To prevent calcification, the oxidative milieu needs to be reduced by elastin-binding antioxidants such as PGG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.