In [12] and [13], M. Kontsevich introduced graph homology as a tool to compute the homology of three infinite dimensional Lie algebras, associated to the three operads "commutative," "associative" and "Lie." We generalize his theorem to all cyclic operads, in the process giving a more careful treatment of the construction than in Kontsevich's original papers. We also give a more explicit treatment of the isomorphisms of graph homologies with the homology of moduli space and Out(F r ) outlined by Kontsevich. In [4] we defined a Lie bracket and cobracket on the commutative graph complex, which was extended in [3] to the case of all cyclic operads. These operations form a Lie bi-algebra on a natural subcomplex. We show that in the associative and Lie cases the subcomplex on which the bi-algebra structure exists carries all of the homology, and we explain why the subcomplex in the commutative case does not.
This paper computes Whitney tower filtrations of classical links. Whitney towers consist of iterated stages of Whitney disks and allow a tree-valued intersection theory, showing that the associated graded quotients of the filtration are finitely generated abelian groups. Twisted Whitney towers are studied and a new quadratic refinement of the intersection theory is introduced, measuring Whitney disk framing obstructions. It is shown that the filtrations are completely classified by Milnor invariants together with new higher-order Sato-Levine and higher-order Arf invariants, which are obstructions to framing a twisted Whitney tower in the 4-ball bounded by a link in the 3-sphere. Applications include computation of the grope filtration and new geometric characterizations of Milnor's link invariants. 57M25, 57M27, 57Q60; 57N10
Motivated by the lower central series of a group, we define the notion of a grope cobordism between two knots in a 3-manifold. Just like an iterated group commutator, each grope cobordism has a type that can be described by a rooted unitrivalent tree. By filtering these trees in different ways, we show how the Goussarov-Habiro approach to finite type invariants of knots is closely related to our notion of grope cobordism. Thus our results can be viewed as a geometric interpretation of finite type invariants.The derived commutator series of a group also has a 3-dimensional analogy, namely knots modulo symmetric grope cobordism. On one hand this theory maps onto the usual Vassiliev theory and on the other hand it maps onto the Cochran-Orr-Teichner filtration of the knot concordance group, via symmetric grope cobordism in 4-space. In particular, the graded theory contains information on finite type invariants (with degree h terms mapping to Vassiliev degree 2 h ), Blanchfield forms or S-equivalence at h = 2, Casson-Gordon invariants at h = 3, and for h = 4 one finds the new von Neumann signatures of a knot.1991 Mathematics Subject Classification. 57M27.
This paper describes the relationship between the first non‐vanishing Milnor invariants of a classical link and the intersection invariant of a twisted Whitney tower. This is a certain 2‐complex in the 4‐ball, built from immersed disks bounded by the given link in the 3‐sphere together with finitely many ‘layers’ of Whitney disks. The intersection invariant is a higher‐order generalization of the intersection number between two immersed disks in the 4‐ball, well known to give the linking number of the link on the boundary, which measures intersections among the Whitney disks and the disks bounding the given link, together with information that measures the twists (framing obstructions) of the Whitney disks. This interpretation of Milnor invariants as higher‐order intersection invariants plays a key role in our classifications [J. Conant, R. Schneiderman and P. Teichner, ‘Higher‐order intersections in low‐dimensional topology’, Proc. Natl Acad. Sci. USA 108 (2011) 8131–8138; J. Conant, R. Schneiderman and P. Teichner, ‘Whitney tower concordance of classical links’, Geom. Topol. 16 (2012) 1419–1479] of both the framed and twisted Whitney tower filtrations on link concordance. Here, we show how to realize the higher‐order Arf invariants, which also play a role in the classifications, and derive new geometric characterizations of links with vanishing length at most 2k Milnor invariants.
The Jacobi identity is the key relation in the definition of a Lie algebra. In the last decade, it has also appeared at the heart of the theory of finite type invariants of knots, links and 3-manifolds (and is there called the IHX relation). In addition, this relation was recently found to arise naturally in a theory of embedding obstructions for 2-spheres in 4-manifolds in terms of Whitney towers. This paper contains the first proof of the four-dimensional version of the Jacobi identity. We also expose the underlying topological unity between the three-and four-dimensional IHX relations, deriving from a beautiful picture of the Borromean rings embedded on the boundary of an unknotted genus 3 handlebody in 3-space. This picture is most naturally related to knot and 3-manifold invariants via the theory of grope cobordisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.