The acoustic frequency ranges in birdsongs and human speech can provide important pitch cues for recognition. Zebra finches and humans were trained to sort contiguous frequencies into 3 or 8 ranges, based on associations between the ranges and reward. The 3-range task was conducted separately in 3 spectral regions. Zebra finches discriminated 3 ranges in the medium and high spectral regions faster than in the low region and discriminated 8 ranges with precision. Humans discriminated 3 ranges in all 3 spectral regions to the same modest standard and acquired only a crude discrimination of the lowest and highest of 8 ranges. The results indicate that songbirds have a special sensitivity to the pitches in conspecific songs and, relative to humans, have a remarkable general ability to sort pitches into ranges.
In Experiment 1, pigeons were trained to discriminate the duration (2 or 8 sec) of an empty interval separated by two 1325-Hz tone markers by responding to red and green comparison stimuli. During delay testing, a choose-short bias occurred at 1 sec, but a robust choose-long bias occurred at 9 sec. Responding in the absence of tone markers indicated that the pigeons were attending to the markers and not simply timing the total trial duration. The birds were then trained to match short (2-sec) or long (8-sec) empty intervals marked by light to blue/yellow comparisons. For both visual and auditory markers, delay testing produced a choose-short bias at 1sec and a choose-long bias at 9 sec. In Experiment 2, the pigeons were shifted from a fixed to variable intertrial intervals (ITI) within sessions. On trials with tone markers, the duration of both the empty interval and the preceding ITI affected choice responding. On trials with light markers, only the duration of the empty interval influenced choice responding. Subsequent delay testing in the context of variable ITIs replicated the memory biases previously obtained. In Experiment 3, performance was assessed at various delay intervals on trials in which either the first or the second marker was omitted. The data from these omission tests indicated that the first marker initiated timing but that the second marker sometimes initiated the timing of a new interval. Explanations of these effects in terms of the internal clock model of timing are discussed, and a simple quantitative model of the delay interval data is tested.Procedural variables are important in the study oftime perception. A comparison of the discrimination offilled intervals and the discrimination of empty intervals has been the focus of some human research (Abel, 1972a(Abel, , 1972bGrondin, 1993;Rammsayer & Lima, 1991), as well as ofanimal research (Mantanus, 1981). In the empty stimulus condition of the study by Mantanus, a flash of light marked the beginning ofthe interval, and presentation of the choice keys marked the end of the interval. The filled interval consisted of the continuous presentation of the light. Mantanus found that pigeons were more accurate with filled intervals than with empty intervals. The interpretation of this effect is ambiguous, because of a number of design and general test procedure problems that were recently outlined by Kraemer, Randall, and Brown (1997). In order to address these concerns, Kraemer et al. (1997) conducted a study in which pigeons were trained to discriminate either filled intervals (light present) or empty intervals (light absent). Consistent with the findings ofMantanus, they found that pigeons judged This research was supported by a grant from the Natural Sciences and Engineering Research Council of Canada (OGPOOD6378). The authors thank Marion Corrick and David Hemsworth for their technical assistance and Melanie Bucking for assisting with some of the data collection. The authors are also very appreciative ofthe substantial contribution of an a...
In Experiment 1,pigeons were trained to discriminate short (2 sec) and long (8 sec) durations of tone by responding to red and green comparison stimuli. During delay testing, a systematic response bias to the comparison stimulus correct for the long duration occurred. Tests of responding without the tone reduced accuracy on long-sample trials but not on short-sample trials suggesting that the pigeons were attending to the tone and not simply timing the total trial duration. The pigeons were then trained to match short (2 sec) and long (8 sec) durations of light to blue/yellow comparisons. During delay testing, "choose-long errors" occurred following tone durations, but "choose-short errors" occurred following light durations. In Experiment 2, accuracy was assessed on test trials in which the tone and the light signals were simultaneously presented for the same duration or for different durations. Pigeons responded accurately to durations of light, but were unable to accurately respond to durations of tone simultaneously presented with the light. The data from Experiment 1 suggest that there are important differences between light and tone signals with respect to the events that control the termination of timing. The data from Experiment 2 indicate that pigeons cannot simultaneously time visual and auditory signals independently and without interference. Consequently, they are inconsistent with the idea that there is a single internal clock that times both tone and light durations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.