Honey bees provide important pollination services to crops and wild plants. The agricultural use of systemic insecticides, such as neonicotinoids, may harm bees through their presence in pollen and nectar, which bees consume. Many studies have tested the effects on honey bees of imidacloprid, a neonicotinoid, but a clear picture of the risk it poses to bees has not previously emerged, because investigations are methodologically varied and inconsistent in outcome. In a meta-analysis of fourteen published studies of the effects of imidacloprid on honey bees under laboratory and semi-field conditions that comprised measurements on 7073 adult individuals and 36 colonies, fitted dose-response relationships estimate that trace dietary imidacloprid at field-realistic levels in nectar will have no lethal effects, but will reduce expected performance in honey bees by between 6 and 20%. Statistical power analysis showed that published field trials that have reported no effects on honey bees from neonicotinoids were incapable of detecting these predicted sublethal effects with conventionally accepted levels of certainty. These findings raise renewed concern about the impact on honey bees of dietary imidacloprid, but because questions remain over the environmental relevance of predominantly laboratory-based results, I identify targets for research and provide procedural recommendations for future studies.
Bumble bees are important pollinators whose populations have declined over recent years, raising widespread concern. One conspicuous threat to bumble bees is their unintended exposure to trace residues of systemic neonicotinoid pesticides, such as imidacloprid, which are ingested when bees forage on the nectar and pollen of treated crops. However, the demographic consequences for bumble bees of exposure to dietary neonicotinoids have yet to be fully established. To determine whether environmentally realistic levels of imidacloprid are capable of making a demographic impact on bumble bees, we exposed queenless microcolonies of worker bumble bees, Bombus terrestris, to a range of dosages of dietary imidacloprid between zero and 125 μg L(-1) and examined the effects on ovary development and fecundity. Microcolonies showed a dose-dependent decline in fecundity, with environmentally realistic dosages in the range of 1 μg L(-1) capable of reducing brood production by one third. In contrast, ovary development was unimpaired by dietary imidacloprid except at the highest dosage. Imidacloprid reduced feeding on both syrup and pollen but, after controlling statistically for dosage, microcolonies that consumed more syrup and pollen produced more brood. We therefore speculate that the detrimental effects of imidacloprid on fecundity emerge principally from nutrient limitation imposed by the failure of individuals to feed. Our findings raise concern about the impact of neonicotinoids on wild bumble bee populations. However, we recognize that to fully evaluate impacts on wild colonies it will be necessary to establish the effect of dietary neonicotinoids on the fecundity of bumble bee queens.
Summary 1. A model is described that evaluates the maximum economic foraging range in central place foragers by using optimality criteria to discriminate between foraging sites at different distances from the forager's central place. 2. The basic model can be varied to suit foragers that optimise either their rate of net energy uptake or their foraging efficiency. 3. The model requires specification of the time and energy budgets of travel and foraging, and of the rewards obtainable at potential foraging sites. 4. The specific case of bumblebees, whose foraging ranges are poorly known, is considered. 5. Numerical solutions of the model for parameter values that represent bumblebees and their forage predict economic foraging ranges exceeding several kilometres. The model demonstrates that economics alone can explain extensive flight ranges in bees.
We present a model that predicts the level of gene flow mediated by animal pollinators from a source population to a sink population. The model requires specification of three elements: (1) the paternity that originates from a single flower, the paternity shadow; (2) the mean number of flowers that pollinators visit during stays in the sink population, the residence; (3) the proportion of pollinators arriving at the sink that carry pollen from the source population. Provided that pollinators visit enough flowers in the sink to exhaust the paternity shadows from the source, the general results are that gene flow is inversely proportional to the mean pollinator residence in the sink population, and is proportional to the fraction of pollinators arriving with pollen from the source. These results are used to propose explanations for two of the widely observed patterns in gene flow among plant populations. Numerical solutions to the model are derived using experimentally determined values of elements (1) and (2) that represent bumblebees, Bombus spp., visiting agricultural fields of oilseed rape, Brassica napus L. In B. napus, the paternity shadow attenuates rapidly over approximately 20 recipient flowers. Mean bumblebee residences in the fields studied varied between 490 and 720 flowers. In the absence of a direct measurement of element (3), we calculated the maximum level of bumblebee‐mediated gene flow by assuming that all bees arrived at the sink saturated with pollen from extrinsic sources. In this case, the model predicts that bumblebee‐mediated gene flow accounted for between 0.1% and 0.5% of the progeny in the agricultural fields studied. A likelihood analysis of our observations is unable to reveal convincingly the proportion of bees arriving at the sink via a source population, but the literature suggests that bumblebees have high site fidelity, which implies that bee‐mediated gene flow may be substantially less than our estimated maximum. We consider the role of various factors, including wind pollination, in accounting for the differences between the model's predictions and the generally higher levels of gene flow observed in previous studies of oilseed rape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.