Nanoscale carbon lubricants such as graphene, have garnered increased interest as protective surface coatings for devices, but its tribological properties have been shown to depend on its interactions with the underlying substrate surface and its degree of surface conformity. This conformity is especially of interest as real interfaces exhibit roughness on the order of ∼10 nm that can dramatically impact the contact area between the graphene film and the substrate. To examine the combined effects of surface interaction strength and roughness on the frictional properties of graphene, a combination of Atomic Force Microscopy (AFM) and Raman microspectroscopy has been used to explore substrate interactions and the frictional properties of single and few-layer graphene as a coating on silica nanoparticle films, which yield surfaces that mimic the nanoscaled asperities found in realistic devices. The interactions between the graphene and the substrate have been controlled by comparing their binding to hydrophilic (silanol terminated) and hydrophobic (octadecyltrichlorosilane modified) silica surfaces. AFM measurements revealed that graphene only partially conforms to the rough surfaces, with decreasing conformity, as the number of layers increase. Under higher mechanical loading the graphene conformity could be reversibly increased, allowing for a local estimation of the out-of-plane bending modulus of the film. The frictional properties were also found to depend on the number of layers, with the largest friction observed on single layers, ultimately decreasing to that of bulk graphite. This trend however, was found to disappear, depending on the tip-sample contact area and interfacial shear strain of the graphene associated with its adhesion to the substrate.
Ratcheting effects play an important role in systems ranging from mechanical socket wrenches to biological motor proteins. The underlying principle is to convert a fluctuating, unbiased force into unidirectional motion. Here, we report the ratcheting of electrons at room temperature using a semiconductor nanowire with precisely engineered asymmetry. Modulation of the nanowire diameter creates a cylindrical sawtooth geometry with broken inversion symmetry on a nanometer-length scale. In a two-terminal device, this structure responded as a three-dimensional geometric diode that funnels electrons preferentially in one direction through specular reflection of quasi-ballistic electrons at the nanowire surface. The ratcheting effect causes charge rectification at frequencies exceeding 40 gigahertz, demonstrating the potential for applications such as high-speed data processing and long-wavelength energy harvesting.
That the radiorubidium distribution method provides good estimates of blood flow to the gastrointestinal organs was demonstrated by comparing the arterial concentration course of the isotope with the simultaneous venous concentration for the individual organs. Blood flow to stomach, intestine and colon are accurately assessed by this method. Estimates for pancreas, gall bladder, esophagus and duodenum are probably correct. Average perfusion rates in the pentobarbital anesthetized dog are, in cc/min.g of tissue: --esophagus, 0.21; stomach, 0.51; duodenum, 0.70; small intestine, 0.72; colon, 0.82; pancreas, 0.60; and gall bladder, 0.39.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.