Brain aging research relies mostly on cross-sectional studies, which infer true changes from age differences. We present longitudinal measures of five-year change in the regional brain volumes in healthy adults. Average and individual differences in volume changes and the effects of age, sex and hypertension were assessed with latent difference score modeling. The caudate, the cerebellum, the hippocampus and the association cortices shrunk substantially. There was minimal change in the entorhinal and none in the primary visual cortex. Longitudinal measures of shrinkage exceeded cross-sectional estimates. All regions except the inferior parietal lobule showed individual differences in change. Shrinkage of the cerebellum decreased from young to middle adulthood, and increased from middle adulthood to old age. Shrinkage of the hippocampus, the entorhinal cortices, the inferior temporal cortex and the prefrontal white matter increased with age. Moreover, shrinkage in the hippocampus and the cerebellum accelerated with age. In the hippocampus, both linear and quadratic trends in incremental age-related shrinkage were limited to the hypertensive participants. Individual differences in shrinkage correlated across some regions, suggesting common causes. No sex differences in age trends except for the caudate were observed. We found no evidence of neuroprotective effects of larger brain size or educational attainment.
In a prospective cross-sectional study, we used computerized volumetry of magnetic resonance images to examine the patterns of brain aging in 148 healthy volunteers. The most substantial age-related decline was found in the volume of the prefrontal gray matter. Smaller age-related differences were observed in the volume of the fusiform, inferior temporal and superior parietal cortices. The effects of age on the hippocampal formation, the postcentral gyrus, prefrontal white matter and superior parietal white matter were even weaker. No significant age-related differences were observed in the parahippocampal and anterior cingulate gyri, inferior parietal lobule, pericalcarine gray matter, the precentral gray and white matter, postcentral white matter and inferior parietal white matter. The volume of the total brain volume and the hippocampal formation was larger in men than in women even after adjustment for height. Inferior temporal cortex showed steeper aging trend in men. Small but consistent rightward asymmetry was found in the whole cerebral hemispheres, superior parietal, fusiform and orbito-frontal cortices, postcentral and prefrontal white matter. The left side was larger than the right in the dorsolateral prefrontal, parahippocampal, inferior parietal and pericalcarine cortices, and in the parietal white matter. However, there were no significant differences in age trends between the hemispheres.
To examine putative brain substrates of cognitive functions differentially affected by age the authors measured the volume of cortical regions and performance on tests of executive functions, working memory, explicit memory, and priming in healthy adults (18-77 years old). The results indicate that shrinkage of the prefrontal cortex mediates age-related increases in perseveration. The volume of visual processing areas predicted performance on nonverbal working memory tasks. Contrary to the hypotheses, in the examined age range, the volume of limbic structures was unrelated to any of the cognitive functions; verbal working memory, verbal explicit memory, and verbal priming were independent of cortical volumes. Nevertheless, among the participants aged above 60, reduction in the volume of limbic structures predicted declines in explicit memory. Chronological age adversely influenced all cognitive indices, although its effects on priming were only indirect, mediated by declines in verbal working memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.