Beta titanium alloys were recognized as a distinct materials class in the 1950s, and following the introduction of Ti-13V-11Cr-3Al in the early 1960s, intensive research occurred for decades thereafter. By the 1980s, dozens of compositions had been explored and sufficient work had been accomplished to warrant the first major conference in 1983. Metallurgists of the time recognized beta alloys as highly versatile and capable of remarkable property development at much lower component weights than steels, coupled with excellent corrosion resistance. Although alloys such as Ti-15V-3Al-3Sn-3Cr, Ti-10V-2Fe-3Al and Ti-3AI-8V-6Cr-4Mo-4Zr (Beta C) were commercialized into well-known airframe systems by the 1980s, Ti-13V-11Cr-3Al was largely discarded following extensive employment on the SR-71 Blackbird. The 1990s saw the implementation of specialty beta alloys such as Beta 21S and Alloy C, in large part for their chemical and oxidation resistance. It was also predicted that by the 1990s, cost would be the major limitation on expansion into new applications. This turned out to be true and is part of the reason for some stagnation in commercialization of new such compositions over the past two decades, despite a good understanding of the relationships among chemistry, processing, and performance and some very attractive offerings. Since then, only a single additional metastable beta alloy, Ti-5Al-5V-5Mo-3Cr-0.5Fe, has been commercialized in aerospace, although low volumes of other chemistries have found a place in the biomedical implant market. This article examines the evolution of this important class of materials and the current status in airframe applications. It speculates on challenges for expanding their use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.