Abstract. We prove Dejean's conjecture. Specifically, we show that Dejean's conjecture holds for the last remaining open values of n, namely 15 ≤ n ≤ 26.
We show that Dejean's conjecture holds for n ≥ 27. This brings the final resolution of the conjecture by the approach of Moulin Ollagnier within range of the computationally feasible.
Let $\overline{\bf t}$ be the infinite fixed point, starting with $1$, of the morphism $\mu: 0 \rightarrow 01$, $1 \rightarrow 10$. An infinite word over $\lbrace 0, 1 \rbrace$ is said to be overlap-free if it contains no factor of the form $axaxa$, where $a \in \lbrace 0,1 \rbrace$ and $x \in \lbrace 0,1 \rbrace^*$. We prove that the lexicographically least infinite overlap-free binary word beginning with any specified prefix, if it exists, has a suffix which is a suffix of $\overline{\bf t}$. In particular, the lexicographically least infinite overlap-free binary word is $001001 \overline{\bf t}$.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.