Using fluctuating bilateral asymmetry as a measure of developmental stability, we tested the hypothesis that genomic coadaptation mediates developmental stability in natural populations. Hybrid populations were more asymmetrical than populations of the parental species, and ranks of overall developmental instability were positively correlated with ranks of mean heterozygosity in these populations. The failure to find increased asymmetry in previous studies of natural hybrid populations (Jackson, 1973a, 1973b; Felley, 1980) suggests that such populations may have re-evolved coadapted genomes. Increased asymmetry in hybrid Enneacanthus populations may reflect the youthfulness of these populations.
Using fluctuating bilateral asymmetry as a measure of developmental stability, we tested the hypothesis that genomic coadaptation mediates developmental stability in natural populations. Hybrid populations were more asymmetrical than populations of the parental species, and ranks of overall developmental instability were positively correlated with ranks of mean heterozygosity in these populations. The failure to find increased asymmetry in previous studies of natural hybrid populations (Jackson, 1973a, 1973b; Felley, 1980) suggests that such populations may have re‐evolved coadapted genomes. Increased asymmetry in hybrid Enneacanthus populations may reflect the youthfulness of these populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.