We report a novel synthesis of nanoparticle Pd-Cu catalysts, containing only trace amounts of Pd, for selective hydrogenation reactions. Pd-Cu nanoparticles were designed based on model single atom alloy (SAA) surfaces, in which individual, isolated Pd atoms act as sites for hydrogen uptake, dissociation, and spillover onto the surrounding Cu surface. Pd-Cu nanoparticles were prepared by addition of trace amounts of Pd (0.18 atomic (at)%) to Cu nanoparticles supported on Al2O3 by galvanic replacement (GR). The catalytic performance of the resulting materials for the partial hydrogenation of phenylacetylene was investigated at ambient temperature in a batch reactor under a head pressure of hydrogen (6.9 bar). The bimetallic Pd-Cu nanoparticles have over an order of magnitude higher activity for phenylacetylene hydrogenation when compared to their monometallic Cu counterpart, while maintaining a high selectivity to styrene over many hours at high conversion. Greater than 94% selectivity to styrene is observed at all times, which is a marked improvement when compared to monometallic Pd catalysts with the same Pd loading, at the same total conversion. X-ray photoelectron spectroscopy and UV-visible spectroscopy measurements confirm the complete uptake and alloying of Pd with Cu by GR. Scanning tunneling microscopy and thermal desorption spectroscopy of model SAA surfaces confirmed the feasibility of hydrogen spillover onto an otherwise inert Cu surface. These model studies addressed a wide range of Pd concentrations related to the bimetallic nanoparticles.
The proton form of Cu-exchanged mordenite (Cu-H-MOR) was prepared via ion-exchange, and the nature of the active Cu species in the cyclic oxidation of CH 4 to CH 3 OH was investigated by high-pressure reactivity testing, X-ray absorption spectroscopy (XAS), and H 2 temperature-programmed reduction (TPR). Increasing the CH 4 pressure from 1 to 35 bar and the reaction time from 4 to 20 h increased the product yield from 0.30 to 0.42 mol (mol Cu) −1 , suggesting that at lower pressures and shorter reaction times, the CH 4 activation reaction is not complete and the active site for CH 3 OH formation likely contains fewer than three Cu atoms. Linear combination fitting of the Cu K-edge X-ray absorption near edge spectra showed that 83% of the Cu in freshly prepared Cu-H-MOR can be autoreduced in He at 723 K. Analysis of the extended X-ray absorption fine structure of Cu-H-MOR after activation in O 2 at 723 K resulted in an oxygen coordination number of 2.9. The product yield normalized by the redox-active Cu fraction was 0.50. All of these findings are consistent with a dicopper active site. The same fraction of nonreducible Cu was observed by autoreduction in He and TPR in H 2 , suggesting that redox-inert Cu is inactive toward CH 4 oxidation.
Atomically dispersed Co(II) cations coordinated to nitrogen in a carbon matrix (Co-N-C) catalyze oxidative dehydrogenation of benzyl alcohol in water with a specific activity approaching that of supported Pt nanoparticles. Whereas Cu(II) cations in N-doped carbon also catalyze the reaction, they are about an order of magnitude less active compared with Co(II) cations. Results from X-ray absorption spectroscopy suggest that oxygen is also bound to N-coordinated Co(II) sites but that it can be partially removed by H 2 treatments at 523−750 K. The N-coordinated Co(II) sites remained cationic in H 2 up to 750 K, and these stable sites were demonstrated to be active for propane dehydrogenation. In situ characterization of Cu(II) in N-doped carbon revealed that reduction of the metal in H 2 started at about 473 K, indicating a much lower thermal stability of Cu(II) in H 2 relative to Co(II). The demonstrated high catalytic activity and thermal stability of Co-N-C in reducing environments suggests that this material may have broad utility in a variety of catalytic transformations.
Recently, there have been renewed interests in exploring new catalysts for ammonia synthesis under mild conditions. Electride-based catalysts are among the emerging ones. Ruthenium particles supported on an electride composed of a mixture of calcium and aluminum oxides (C12A7) have attracted great attention for ammonia synthesis due to their facile ability in activating N2 under ambient pressure. However, the exact nature of the reactive hydrogen species and the role of electride support still remain elusive for this catalytic system. In this work, we report for the first time that the surface-adsorbed hydrogen, rather than the hydride encaged in the C12A7 electride, plays a major role in ammonia synthesis over the Ru/C12A7 electride catalyst with the aid of in situ neutron scattering techniques. Combining in situ neutron diffraction, inelastic neutron spectroscopy, density functional theory (DFT) calculation, and temperature-programmed reactions, the results provide direct evidence for not only the presence of encaged hydrides during ammonia synthesis but also the strong thermal and chemical stability of the hydride species in the Ru/C12A7 electride. Steady state isotopic transient kinetic analysis (SSITKA) of ammonia synthesis showed that the coverage of reactive intermediates increased significantly when the Ru particles were promoted by the electride form (coverage up to 84%) of the C12A7 support rather than the oxide form (coverage up to 15%). Such a drastic change in the intermediate coverage on the Ru surface is attributed to the positive role of electride support where the H2 poisoning effect is absent during ammonia synthesis over Ru. The finding of this work has significant implications for understanding catalysis by electride-based materials for ammonia synthesis and hydrogenation reactions in general.
The direct and single-step conversion of benzene, ethylene, and a Cu(II) oxidant to styrene using the Rh(I) catalyst (DAB)Rh(TFA)(η-CH) [DAB = N,N'-bis(pentafluorophenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene; TFA = trifluoroacetate] has been reported to give quantitative yields (with Cu(II) as the limiting reagent) and selectivity combined with turnover numbers >800. This report details mechanistic studies of this catalytic process using a combined experimental and computational approach. Examining catalysis with the complex (DAB)Rh(OAc)(η-CH) shows that the reaction rate has a dependence on catalyst concentration between first- and half-order that varies with both temperature and ethylene concentration, a first-order dependence on ethylene concentration with saturation at higher concentrations of ethylene, and a zero-order dependence on the concentration of Cu(II) oxidant. The kinetic isotope effect was found to vary linearly with the order in (DAB)Rh(OAc)(η-CH), exhibiting no KIE when [Rh] was in the half-order regime, and a k/k value of 6.7(6) when [Rh] was in the first-order regime. From these combined experimental and computational studies, competing pathways, which involve all monomeric Rh intermediates and a binuclear Rh intermediate in the other case, are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.