No abstract
Avian mortality events are common following large-scale oil spills. However, the sublethal effects of oil on birds exposed to light external oiling are not clearly understood. We found that American oystercatchers (area of potential impact n = 42, reference n = 21), black skimmers (area of potential impact n = 121, reference n = 88), brown pelicans (area of potential impact n = 91, reference n = 48), and great egrets (area of potential impact n = 57, reference n = 47) captured between 20 June 2010 and 23 February 2011 following the Deepwater Horizon oil spill experienced oxidative injury to erythrocytes, had decreased volume of circulating erythrocytes, and showed evidence of a regenerative hematological response in the form of increased reticulocytes compared with reference populations. Erythrocytic inclusions consistent with Heinz bodies were present almost exclusively in birds from sites impacted with oil, a finding pathognomonic for oxidative injury to erythrocytes. Average packed cell volumes were 4 to 19% lower and average reticulocyte counts were 27 to 40% higher in birds with visible external oil than birds from reference sites. These findings provide evidence that small amounts of external oil exposure are associated with hemolytic anemia. Furthermore, we found that some birds captured from the area impacted by the spill but with no visible oiling also had erythrocytic inclusion bodies, increased reticulocytes, and reduced packed cell volumes when compared with birds from reference sites. Thus, birds suffered hematologic injury despite no visible oil at the time of capture. Together, these findings suggest that adverse effects of oil spills on birds may be more widespread than estimates based on avian mortality or severe visible oiling. Environ Toxicol Chem 2018;37:451-461. © 2017 SETAC.
Water‐level management is widespread and illustrates how contemporary climate can interact directly and indirectly with numerous biological and abiotic factors to influence reproductive success of wildlife species. We studied common loons, an iconic waterbird sensitive to timing and magnitude of water‐level changes during the breeding season, using a before‐after‐control‐impact design on large lakes in Voyageurs National Park (Minnesota, USA), to assess the effect of anthropogenic changes in hydroregime on their nesting success and productivity. We examined multiple competing a priori hypotheses in an information‐theoretic framework, and predicted that magnitude of changes in loon productivity would be greater in the Namakan Reservoir, where water‐level management was altered to mimic a more natural hydroregime, than in Rainy Lake, where management remained relatively unchanged. We determined outcomes from 278 nests during 2004–2006 by performing boat‐based visits every 3–5 days, and measuring hydrologic, vegetative, and microtopographic covariates. Relative to comparably collected data for 260 total loon pairs during 1983–1986, productivity (chicks hatched/territorial pair) increased 95% in the Namakan Reservoir between the 2 time periods. Nest success declined in both lakes over the 2 study periods but less so in the Namakan Reservoir than in Rainy Lake. Flooding was a primary cause of nest failures (though second nests were less likely to flood). Nest predation appears to have increased considerably between the 2 study periods. Top‐ranked models suggested that timing of nest initiation, probability of nest flooding, probability of nest stranding, and probability of nest success were each related to 2–4 factors, including date of initiation, timing of initiation relative to peak water levels, changes in the elevation of the nest edge, maximum water‐level change between initiation and peak water levels, and maximum water‐level change between initiation and nest outcome. The top model for all variables except stranding each garnered ≥82% of total model weight. Results demonstrate that water‐level management can be altered to benefit productivity of common loons. However, nuanced interactions between land‐use change, invasive species, human development, recreation, climate change, and recovery of top predators may often complicate both management decisions and interpretation of water‐level impacts on wildlife. © 2013 The Wildlife Society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.