Metallic foams are a new class of ultra-lightweight materials with potential applications in such industries as automobile, aerospace, and energy industries. These materials when realized in product form can serve as efficient heat exchanges, energy absorbers, and thermal protective and hydrogen storage devices. Accurate determination of thermal conductivity and understanding of heat transfer characteristics is important in designing such products incorporating metal foams. The present research characterizes the effective thermal conductivity and heat transfer characteristics of DUOCEL AL 6106-T6 and Stainless Steel 314 open cell foams by experiments at near room temperature conditions. The effective thermal conductivity of these materials has been determined experimentally. Thermal conductivity of metal foams increased with increasing mechanical stress. The effect of porosity on the thermal conductivity of ERG supplied aluminum and NASA-GRC supplied SS 314 are also studied and compared with the published data in literature, however, in our studies systematic dependency of porosity is not observed. Experiments also conducted to quantify forced convective heat transfer characteristics under laminar flow conditions. Heat transfer coefficient increases with increased Reynolds number but results are not conclusive in case of natural convection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.