Osteoarthritis (OA) is an age-related joint disease characterized by degeneration of articular cartilage and is associated with chronic pain. Although several experimental models of OA have been employed to investigate the underlying etiologies of the disease, there has been relatively little investigation into development of animal models of OA to study the pain associated with the condition. In the present study, we investigated OA induced by injection of either iodoacetate or papain into the knee joint of rats, and assessed the joint degeneration with radiographic analyses and measured pain behavior using hind limb weight bearing. We found that injection of iodoacetate, but not papain, resulted in a chronic joint degeneration as measured by decreased bone mineral content and bone mineral density, necrosis of articular cartilage and osteophyte formation. These pathological changes were associated with pain that manifested as time- and concentration-dependent alterations in hind limb weight bearing. These alterations in hind limb weight bearing were reversed with morphine, but were not significantly affected by acute administration of either indomethacin or celecoxib. However, administration of 30 mg/kg celecoxib twice daily for 10 days resulted in a significant restoration of hind limb weight bearing. We conclude that the iodoacetate model of OA is a relevant animal model to study pain associated with OA, and can be used to test potential therapeutic agents.
The vanilloid receptor 1 (VR1) is a cation channel expressed predominantly by nociceptive sensory neurons and is activated by a wide array of pain-producing stimuli, including capsaicin, noxious heat, and low pH. Although the behavioral effects of injected capsaicin and the VR1 antagonist capsazepine have indicated a potential role for VR1 in the generation and maintenance of persistent pain states, species differences in the molecular pharmacology of VR1 and a limited number of selective ligands have made VR1 difficult to study in vivo. N-(4-Tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropryazine-1(2H)-carbox-amide (BCTC) is a recently described inhibitor of capsaicin-and acidmediated currents at rat VR1. Here, we report the effects of BCTC on acute, inflammatory, and neuropathic pain in rats. Administration of BCTC (30 mg/kg p.o.) significantly reduced both mechanical and thermal hyperalgesia induced by intraplantar injection of 30 g of capsaicin. In rats with Freund's complete adjuvantinduced inflammation, BCTC significantly reduced the accompanying thermal and mechanical hyperalgesia (3 mg/kg and 10 mg/kg p.o., respectively). BCTC also reduced mechanical hyperalgesia and tactile allodynia 2 weeks after partial sciatic nerve injury (10 and 30 mg/kg p.o.). BCTC did not affect motor performance on the rotarod after administration of doses up to 50 mg/kg p.o. These data suggest a role for VR1 in persistent and chronic pain arising from inflammation or nerve injury.The vanilloid receptor type 1 (VR1) is a pivotal molecular integrator of noxious stimuli that is expressed on somatic and autonomic primary afferent neurons. VR1 has been confirmed as a ligand-gated ion channel after its cloning from rat and human tissues, and has been shown to be highly expressed in small-diameter primary afferent neurons (Caterina et al., 1997;Hayes et al., 2000;McIntyre et al., 2001). In vitro studies have shown that, like the native vanilloid receptor, recombinant VR1 can be activated by a variety of chemical as well as physical stimuli. In vitro, VR1 responds to plant-derived compounds, including capsaicin, a pungent component of chili peppers, lipid mediators such as anandamide , the lipoxygenase product 12-(S)-hydroperoxyeicosatetraenoic acid (Hwang et al., 2000), as well as noxious heat (Caterina et al., 1997) and low pH (Tominaga et al., 1998).A potential role for VR1 in nociception has been evident for some time because injection of the VR1 agonist capsaicin induces nocifensive and hyperalgesic behaviors in rodents and pain in humans (Szolcsanyi, 1977;Carpenter and Lynn, 1981;Simone et al., 1987Simone et al., , 1989Gilchrist et al., 1996). Further support for VR1 as a therapeutic target arose from experiments involving capsazepine. Capsazepine is a VR1 antagonist that has been shown to competitively inhibit capsaicin-mediated responses in isolated dorsal root ganglion (DRG) neurons (Bevan et al., 1992a) and tissues from rat (Bevan et al., 1992b;Cholewinski et al., 1993;Maggi et al., 1993;Santicioli et al., 19...
Pain is the cancer related event that is most disruptive to the cancer patient's quality of life. Although bone cancer pain is one of the most severe and common of the chronic pains that accompany breast, prostate and lung cancers, relatively little is known about the mechanisms that generate and maintain this pain. Recently, we developed a mouse model of bone cancer pain and 16 days following tumor implantation into the intramedullary space of the femur, significant bone destruction and bone cancer pain-related behaviors were observed. A critical question is how closely this model mirrors human bone cancer pain. In the present study we show that, as in humans, pain-related behaviors are diminished by systemic morphine administration in a dose dependent fashion that is naloxone-reversible. Humans suffering from bone cancer pain generally require significantly higher doses of morphine as compared to individuals with inflammatory pain and in the mouse model, the doses of morphine required to block bone cancer pain-related behaviors were ten times that required to block peak inflammatory pain behaviors of comparable magnitude induced by hindpaw injection of complete Freund's adjuvant (CFA) (1-3mg/kg). As these animals were treated acutely, there was not time for morphine tolerance to develop and the rightward shift in analgesic efficacy observed in bone cancer pain vs. inflammatory pain suggests a fundamental difference in the underlying mechanisms that generate bone cancer vs. inflammatory pain. These results indicate that this model may be useful in defining drug therapies that are targeted for complex bone cancer pain syndromes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.