Dengue is one of the most rapidly spreading mosquito-borne viral diseases in the world. Differential diagnosis is a crucial step for the management of the disease and its epidemiology. Point-of-care testing of blood-borne dengue biomarkers provides an advantageous approach in many health care settings, and the ability to follow more than one biomarker at once could significantly improve the management of the disease. Bead-based multiplex technologies (suspension array) can measure multiple biomarker targets simultaneously by using recognition molecules immobilized on microsphere beads. The overarching objective of our work is to develop a portable detection device for the simultaneous measurement of multiple biomarkers important in dengue diagnosis, monitoring and treatment. Here, we present a bead-based assay for the detection of one of the four serotypes of dengue virus non-structural protein (DENV-NS1) as well as its cognate human IgG. In this system, the fluorescent microspheres containing the classification fluorophore and detection fluorophore are imaged through a microfluidic chip using an infinity-corrected microscope system. Calibration curves were plotted for median fluorescence intensity against known concentrations of DENV-NS1 protein and anti-NS1 human IgG. The limit of quantitation was 7.8 ng/mL and 15.6 ng/mL, respectively. The results of this study demonstrate the feasibility of the multiplex detection of dengue biomarkers and present its analytical performance parameters. The proposed imaging device holds potential for point-of-care testing of biomarkers on a highly portable system, and it may facilitate the diagnosis and prevention of dengue as well as other infectious diseases.
An optofluidic nano-Bragg microcavity filter is designed using three-dimensional finite difference time domain technique and fabricated using electron-beam lithography and reactive ion etching techniques on a silicon-on-insulator (SOI) material. Continuous filter tuning is possible via small refractive index changes by introducing different fluids. An index change of 0.03 corresponds to a peak resonance wavelength shift of approximately 1 nm. The SOI chip is also integrated with a polydimethlysiloxane microfluidic chip for the fluid delivery.
In this paper we present a portable blood analysis system based on a disposable cartridge and hand-held reader. The platform can perform all the sample preparation, detection and waste collection required to complete a clinical test. In order to demonstrate the utility of this approach a CD4 T cell enumeration was carried out. A handheld, point-ofcare CD4 T cell system was developed based on this system. In particular we will describe a pneumatic, active pumping method to control the on-chip fluidic actuation. Reagents for the CD4 T cell counting assay were dried on a reagent plug to eliminate the need for cold chain storage when used in the field. A micromixer based on the active fluidic actuation was designed to complete sample staining with fluorescent dyes that was dried on the reagent plugs. A novel image detection and analysis algorithm was developed to detect and track the flight of target particles and cells during each analysis. The handheld, point-of-care CD4 testing system was benchmarked against clinical cytometer. The experimental results demonstrated experimental results were closely matched with the flow cytometry. The same platform can be further expanded into a bead-array detection system where other types of biomolecules such as proteins can be detected using the same detection system.View presentation recording on the SPIE Digital Library: http://dx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.