SummaryBackgroundRemote ischaemic conditioning with transient ischaemia and reperfusion applied to the arm has been shown to reduce myocardial infarct size in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). We investigated whether remote ischaemic conditioning could reduce the incidence of cardiac death and hospitalisation for heart failure at 12 months.MethodsWe did an international investigator-initiated, prospective, single-blind, randomised controlled trial (CONDI-2/ERIC-PPCI) at 33 centres across the UK, Denmark, Spain, and Serbia. Patients (age >18 years) with suspected STEMI and who were eligible for PPCI were randomly allocated (1:1, stratified by centre with a permuted block method) to receive standard treatment (including a sham simulated remote ischaemic conditioning intervention at UK sites only) or remote ischaemic conditioning treatment (intermittent ischaemia and reperfusion applied to the arm through four cycles of 5-min inflation and 5-min deflation of an automated cuff device) before PPCI. Investigators responsible for data collection and outcome assessment were masked to treatment allocation. The primary combined endpoint was cardiac death or hospitalisation for heart failure at 12 months in the intention-to-treat population. This trial is registered with ClinicalTrials.gov (NCT02342522) and is completed.FindingsBetween Nov 6, 2013, and March 31, 2018, 5401 patients were randomly allocated to either the control group (n=2701) or the remote ischaemic conditioning group (n=2700). After exclusion of patients upon hospital arrival or loss to follow-up, 2569 patients in the control group and 2546 in the intervention group were included in the intention-to-treat analysis. At 12 months post-PPCI, the Kaplan-Meier-estimated frequencies of cardiac death or hospitalisation for heart failure (the primary endpoint) were 220 (8·6%) patients in the control group and 239 (9·4%) in the remote ischaemic conditioning group (hazard ratio 1·10 [95% CI 0·91–1·32], p=0·32 for intervention versus control). No important unexpected adverse events or side effects of remote ischaemic conditioning were observed.InterpretationRemote ischaemic conditioning does not improve clinical outcomes (cardiac death or hospitalisation for heart failure) at 12 months in patients with STEMI undergoing PPCI.FundingBritish Heart Foundation, University College London Hospitals/University College London Biomedical Research Centre, Danish Innovation Foundation, Novo Nordisk Foundation, TrygFonden.
Prevention efforts and control of tuberculosis are seriously hampered by the appearance of multidrug-resistant strains of Mycobacterium tuberculosis, dictating new approaches to the treatment of the disease. Thiolactomycin (TLM) is a unique thiolactone that has been shown to exhibit anti-mycobacterial activity by specifically inhibiting fatty acid and mycolic acid biosynthesis. In this study, we present evidence that TLM targets two -ketoacyl-acyl-carrier protein synthases, KasA and KasB, consistent with the fact that both enzymes belong to the fatty-acid synthase type II system involved in fatty acid and mycolic acid biosynthesis. Overexpression of KasA, KasB, and KasAB in Mycobacterium bovis BCG increased in vivo and in vitro resistance against TLM. In addition, a multidrug-resistant clinical isolate was also found to be highly sensitive to TLM, indicating promise in counteracting multidrug-resistant strains of M. tuberculosis. The design and synthesis of several TLM derivatives have led to compounds more potent both in vitro against fatty acid and mycolic acid biosynthesis and in vivo against M. tuberculosis. Finally, a threedimensional structural model of KasA has also been generated to improve understanding of the catalytic site of mycobacterial Kas proteins and to provide a more rational approach to the design of new drugs.
It has long been held that the malaria parasite, Plasmodium sp., is incapable of de novo fatty acid synthesis. This view has recently been overturned with the emergence of data for the presence of a fatty acid biosynthetic pathway in the relict plastid of P. falciparum (known as the apicoplast). This pathway represents the type II pathway common to plant chloroplasts and bacteria but distinct from the type I pathway of animals including humans. Specific inhibitors of the type II pathway, thiolactomycin and triclosan, have been reported to target this Plasmodium pathway. Here we report further inhibitors of the plastid-based pathway that inhibit Plasmodium parasites. These include several analogues of thiolactomycin, two with sixfold-greater efficacy than thiolactomycin. We also report that parasites respond very rapidly to such inhibitors and that the greatest sensitivity is seen in ring-stage parasites. This study substantiates the importance of fatty acid synthesis for blood-stage parasite survival and shows that this pathway provides scope for the development of novel antimalarial drugs.
The overall increase in live births demonstrated by this study indicates that the effort and expense to culture embryos in a low-O(2) environment is justified. The study was registered at clinicaltrials.gov. NCT00708487.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.