Purpose
Treatment of acute lung injury (ALI) observed in Gram-negative sepsis represents an unmet medical need due to a high mortality rate and lack of effective treatment. Accordingly, we developed and characterized a novel nanomedicine against ALI. We showed that when human glucagon-like peptide 1(7–36) (GLP-1) self-associated with PEGylated phospholipid micelles (SSM), the resulting GLP1-SSM (hydrodynamic size, ~15 nm) exerted effective anti-inflammatory protection against lipopoly-saccharide (LPS)-induced ALI in mice.
Methods
GLP1-SSM was prepared by incubating GLP-1 with SSM dispersion in saline and characterized using fluorescence spectroscopy and circular dichroism. Bioactivity was tested by in vitro cAMP induction, while in vivo anti-inflammatory effects were determined by lung neutrophil cell count, myeloperoxidase activity and pro-inflammatory cytokine levels in LPS-induced ALI mice.
Results
Amphipathic GLP-1 interacted spontaneously with SSM as indicated by increased α-helicity and fluorescence emission. This association elicited increased bioactivity as determined by in vitro cAMP production. Correspondingly, subcutaneous GLP1-SSM (5–30 nmol/mouse) manifested dose-dependent decrease in lung neutrophil influx, myeloperoxidase activity and interleukin-6 in ALI mice. By contrast, GLP-1 in saline showed no significant anti-inflammatory effects against LPS-induced lung hyper-inflammatory responses.
Conclusions
GLP1-SSM is a promising novel anti-inflammatory nanomedicine against ALI and should be further developed for its transition to clinics.
Despite advances in rheumatoid arthritis (RA) treatment, efficacious and safe disease-modifying therapy still represents an unmet medical need. Here we describe an innovative strategy to treat RA by targeting low doses of vasoactive intestinal peptide (VIP) self-associated with sterically stabilized micelles (SSMs). This spontaneous interaction of VIP with SSM protects the peptide from degradation or inactivation in biological fluids and prolongs circulation half-life. Treatment with targeted low doses of nano-sized SSM-VIP but not free VIP in buffer significantly reduced incidence and severity of arthritis in an experimental model, completely abrogating joint swelling and destruction of cartilage and bone. In addition, SSM associated VIP unlike free VIP had no side-effects on the systemic functions due to selective targeting to inflamed joints. Finally, low doses of VIP in SSM successfully downregulated both inflammatory and autoimmune components of RA. Collectively, our data clearly indicate that VIP-SSM should be developed to be used as a novel nanomedicine for the treatment of RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.