The carbon cycle of the coastal ocean is a dynamic component of the global carbon budget. But the diverse sources and sinks of carbon and their complex interactions in these waters remain poorly understood. Here we discuss the sources, exchanges and fates of carbon in the coastal ocean and how anthropogenic activities have altered the carbon cycle. Recent evidence suggests that the coastal ocean may have become a net sink for atmospheric carbon dioxide during post-industrial times. Continued human pressures in coastal zones will probably have an important impact on the future evolution of the coastal ocean's carbon budget.
Radiocarbon (Δ14C), δ13C, bulk carbon and organic constituent concentration measurements are presented for dissolved and particulate carbon pools from the North Central Pacific Ocean (NCP) and the Sargasso Sea (SS). We operationally define three overlapping pools of dissolved organic carbon (DOC): (1) DOC that is oxidizable by UV radiation (DOCuv); (2) “extra” DOC measured by Co/CoO flow‐through high‐temperature catalytic oxidation (DOCFt‐htc), which also has low Δ14C values like DOCuv (Bauer et al., 1992a); and (3) a potential residual DOC fraction that is the difference between DOC measured by discrete‐injection high‐temperature catalytic oxidation (DOChtc) and DOCFt‐htc, and which has unknown Δ14C signature. The distribution of a large fraction of DOC appears to be controlled by circulation of deep ocean waters between major oceans. The DOC in the SS is slightly younger than would be expected if circulation was the sole process controlling DOC cycling. We propose that there is more bomb 14C in the deep SS DOC to account for this difference. The Δ14C values of suspended, and to a lesser extent sinking particulate organic carbon (POC), decrease with depth, with the suspended POC displaying a much steeper gradient in the SS than in the NCP. These data reflect the incorporation of low‐activity organic matter into the POC pool, possibly through incorporation of DOC by physical adsorption and/or biological heterotrophy.
The availability of iron is known to exert a controlling influence on biological productivity in surface waters over large areas of the ocean and may have been an important factor in the variation of the concentration of atmospheric carbon dioxide over glacial cycles. The effect of iron in the Southern Ocean is particularly important because of its large area and abundant nitrate, yet iron-enhanced growth of phytoplankton may be differentially expressed between waters with high silicic acid in the south and low silicic acid in the north, where diatom growth may be limited by both silicic acid and iron. Two mesoscale experiments, designed to investigate the effects of iron enrichment in regions with high and low concentrations of silicic acid, were performed in the Southern Ocean. These experiments demonstrate iron's pivotal role in controlling carbon uptake and regulating atmospheric partial pressure of carbon dioxide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.