a b s t r a c tWe studied soil decomposition in a Panicum hemitomon (Schultes)-dominated freshwater marsh located in southeastern Louisiana that was unambiguously changed by secondarily-treated municipal wastewater effluent. We used four approaches to evaluate how belowground biomass decomposition rates vary under different nutrient regimes in this marsh. The results of laboratory experiments demonstrated how nutrient enrichment enhanced the loss of soil or plant organic matter by 50%, and increased gas production. An experiment demonstrated that nitrogen, not phosphorus, limited decomposition. Cellulose decomposition at the field site was higher in the flowfield of the introduced secondarily treated sewage water, and the quality of the substrate (% N or % P) was directly related to the decomposition rates. We therefore rejected the null hypothesis that nutrient enrichment had no effect on the decomposition rates of these organic soils. In response to nutrient enrichment, plants respond through biomechanical or structural adaptations that alter the labile characteristics of plant tissue. These adaptations eventually change litter type and quality (where the marsh survives) as the % N content of plant tissue rises and is followed by even higher decomposition rates of the litter produced, creating a positive feedback loop. Marsh fragmentation will increase as a result. The assumptions and conditions underlying the use of unconstrained wastewater flow within natural wetlands, rather than controlled treatment within the confines of constructed wetlands, are revealed in the loss of previously sequestered carbon, habitat, public use, and other societal benefits.
An oligotrophic coastal freshwater marsh converted to open water within months after receiving partially-treated sewage water in fall 2006. Rafts of the upper 60 cm of marsh soil were found throughout the area within two years, as parts of the 1100 year-old marsh were re-distributed in the open water. We examined the marsh soils from 2009 to 2012 to determine some of the cause-and-effect consequences of their decomposition to the formation of these floating mats. There was a lack of herbivory damage in April 2009 where the outer boundary of the soil profile was weakened at 50-60 cm depth, and eventually converted to open water. A 2012 storm event flooded the area by 1.5 m, resulting in new marsh mat 'popups' whose bottom underside was coincidental with the layer of maximum decline in soil strength in the sewage treated area. We conclude that the addition of partially-treated sewage weakened the soil structure during this high water event and others to allow for the vertical separation of the marsh as the buoyancy forces exceeded the marsh's anchor strength, thereby exposing the softer older peats to decomposition, and smothering marsh underneath the mat's new location. A chronic effect of eutrophication on these marshes was, therefore, revealed in a dramatic flooding event. A bottom up (nutrient addition), not top-down stress (herbivory) contributed to wetland loss in the area, and is a potentially significant chronic stressor for other eutrophied marshes with significant aboveground flooding.
We measured soil shear strength (SSS) from 2009 to 2018 in two hydrologically distinct freshwater marshes dominated by Panicum hemitomon after nitrogen (N) and phosphorous (P) were applied to the surface in spring. The SSS averaged over 100cm depth in the floating and anchored marshes declined up to 30% throughout the profiles and with no apparent differences in the effects of the low, medium, and high N + P dosing. Plots with only N or P additions exhibited significant changes in SSS at individual depths below 40 cm for the anchored marsh, but not the floating marsh. The average SSS for the anchored marsh over the entire 100 cm profile declined when N and P were added separately or together. At the floating marsh, however, the SSS decreased when N and P were added in combination, or P alone, but not for the N addition. Increasing nutrient availability to these freshwater marsh soils makes them weaker, and perhaps lost if eroded or uplifted by buoyant forces during storms. These results are consistent with results from multi-year experiments demonstrating higher decomposition rates, greenhouse gas emissions, and carbon losses in wetlands following increased nutrient availability.
We conducted a laboratory experiment to examine how the decomposition of particulate belowground organic matter from a salt marsh is enhanced, or not, by different mixtures of crude oil, nitrogen (N), or phosphorus (P) acting individually or synergistically. The experiment was conducted in 3.8 L sampling chambers producing varying quantities of gas whose volume was used as a surrogate measure of organic decomposition under anaerobic conditions. Gas production after 28 days, from highest to lowest, was ?NP = ?N [ [ [ ?P, or ?oil. The gas production under either ?P or ?oil conditions was indistinguishable from gas production in the control chamber. Nitrogen, not phosphorus, or ?NP, was the dominant factor controlling organic decomposition rates in these experiments. The implication for organic salt marsh soils is that shoreline erosion is enhanced by salt marsh oiling, presumably by its toxicity, but not by its effect on the decomposition rates of plant biomass belowground. Nutrient additions, on the other hand, may compromise the soil strength, creating a stronger disparity in soil strength between upper and lower soil layers leading to marsh loss. Nutrient amendments intended to decrease oil concentration in the marsh may not have the desired effect, and are likely to decrease soil strength, thereby enhancing marsh-towater conversions in organic salt marsh soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.