Environmental impacts of energy use can impose large costs on society. We quantify and monetize the life-cycle climate-change and health effects of greenhouse gas (GHG) and fine particulate matter (PM2.5) emissions from gasoline, corn ethanol, and cellulosic ethanol. For each billion ethanol-equivalent gallons of fuel produced and combusted in the US, the combined climate-change and health costs are $469 million for gasoline, $472-952 million for corn ethanol depending on biorefinery heat source (natural gas, corn stover, or coal) and technology, but only $123-208 million for cellulosic ethanol depending on feedstock (prairie biomass, Miscanthus, corn stover, or switchgrass). Moreover, a geographically explicit life-cycle analysis that tracks PM2.5 emissions and exposure relative to U.S. population shows regional shifts in health costs dependent on fuel production systems. Because cellulosic ethanol can offer health benefits from PM2.5 reduction that are of comparable importance to its climate-change benefits from GHG reduction, a shift from gasoline to cellulosic ethanol has greater advantages than previously recognized. These advantages are critically dependent on the source of land used to produce biomass for biofuels, on the magnitude of any indirect land use that may result, and on other as yet unmeasured environmental impacts of biofuels.fine particulate matter ͉ ethanol ͉ biomass ͉ greenhouse gas ͉ life-cycle analysis
Climate change in the circumpolar region is causing dramatic environmental change that is increasing the vulnerability of infrastructure. We quantified the economic impacts of climate change on Alaska public infrastructure under relatively high and low climate forcing scenarios [representative concentration pathway 8.5 (RCP8.5) and RCP4.5] using an infrastructure model modified to account for unique climate impacts at northern latitudes, including near-surface permafrost thaw. Additionally, we evaluated how proactive adaptation influenced economic impacts on select infrastructure types and developed first-order estimates of potential land losses associated with coastal erosion and lengthening of the coastal ice-free season for 12 communities. Cumulative estimated expenses from climate-related damage to infrastructure without adaptation measures (hereafter damages) from 2015 to 2099 totaled $5.5 billion (2015 dollars, 3% discount) for RCP8.5 and $4.2 billion for RCP4.5, suggesting that reducing greenhouse gas emissions could lessen damages by $1.3 billion this century. The distribution of damages varied across the state, with the largest damages projected for the interior and southcentral Alaska. The largest source of damages was road flooding caused by increased precipitation followed by damages to buildings associated with near-surface permafrost thaw. Smaller damages were observed for airports, railroads, and pipelines. Proactive adaptation reduced total projected cumulative expenditures to $2.9 billion for RCP8.5 and $2.3 billion for RCP4.5. For road flooding, adaptation provided an annual savings of 80-100% across four study eras. For nearly all infrastructure types and time periods evaluated, damages and adaptation costs were larger for RCP8.5 than RCP4.5. Estimated coastal erosion losses were also larger for RCP8.5.Alaska | climate change | damages | adaptation | infrastructure
The effect of climate change on the frequency and intensity of droughts across the contiguous United States over the next century is assessed by applying Standardized Precipitation Indices and the Palmer Drought Severity Index to the full suite of 22 Intergovernmental Panel on Climate Change General Circulation Models for three IPCC-SRES emissions scenarios (B1, A1B, and A2 from the Special Report on Emissions Scenarios (SRES) listed in order of their emissions through 2100 from high to low). The frequency of meteorological drought based on precipitation alone is projected to increase in some parts of the US, for example the southwestern states, and decrease in others. Hydrological drought frequencies based on precipitation and temperature are projected to increase across most of the country, however, with very substantial and almost universally experienced increases in drought risk by 2050. For both measures, the southwestern US and the Rocky Mountain states are projected to experience the largest increases in drought frequency, but these areas may be able to exploit existing excess storage capacity. Drought frequencies and uncertainties in their projection tend to increase considerably over time and show a strong worsening trend along higher greenhouse gas emissions scenarios, suggesting substantial benefits for greenhouse gas emissions reductions.
Recent literature, the US Global Change Research Program's National Climate Assessment, and recent events, such as Hurricane Sandy, highlight the need to take better account of both storm surge and sea-level rise (SLR) in assessing coastal risks of climate change. This study combines three models-a tropical cyclone simulation model; a storm surge model; and a model for economic impact and adaptation-to estimate the joint effects of storm surge and SLR for the US coast through 2100. The model is tested using multiple SLR scenarios, including those incorporating estimates of dynamic ice-sheet melting, two global greenhouse gas (GHG) mitigation policy scenarios, and multiple general circulation model climate sensitivities. The results illustrate that a large area of coastal land and property is at risk of damage from storm surge today; that land area and economic value at risk expands over time as seas rise and as storms become more intense; that adaptation is a cost-effective response to this risk, but residual impacts remain after adaptation measures are in place; that incorporating site-specific episodic storm surge increases national damage estimates by a factor of two relative to SLR-only estimates, with greater impact on the East and Gulf coasts; and that mitigation of GHGs contributes to significant lessening of damages. For a mid-range
Estimates of the true economic cost that might be attributed to greenhouse-induced sealevel rise on the developed coastline of the United States are offered for the range of trajectories that is now thought to be most likely. Along a 50-cm sea level rise trajectory (through 2100), for example, transient costs in 2065 (a year frequently anticipated for doubling of greenhouse-gas concentrations) are estimated to be roughly $70 million (undiscounted, but measured in constant 19905). More generally and carefully cast in the appropriate context of protection decisions for developed property, the results reported here are nearly an order of magnitude lower than estimates published prior to 1994. They are based upon a calculus that reflects rising values for coastal property as the future unfolds, but also includes the cost-reducing potential of natural, market-based adaptation in anticipation of the threat of rising seas and/or the efficiency of discrete decisions to protect or not to protect small tracts of property that will be made when necessary and on the (then current) basis of their individual economic merit.Early predictions of dramatic greenhouse-induced sea-level rise have given way over the past decade to more modest expectations. High projections settled around 1.5 meters in 1990 and converged to slightly more than 1 meter by 1992.1 The mid-range best guess now stands at 64 cm. Widely cited work by Wigley and Raper (1992) nonetheless offers a mid-range estimate of 48 cm -a value that is nearly matched by the median value offered by Titus and Narayanan (1995) and a value that exceeds the largest of the most recent stable concentration mid-range estimates offered by Wigley (1995) by more than 20%.The Wigley (1995) estimates for climate-induced sea-level rise, all of which assume stabilized concentrations, are recorded in Table I. Even though the oceans would continue to rise for centuries even if concentrations were stabilized in the interim, the highest middle value reported for 2100 is 40 cm. Recognizing, as well, that scenarios in which concentrations peak around the 750 ppm level are not all that uncommon, 2 it is clear that a new set of estimates of the economic cost of sea-level rise along lower trajectories should be constructed. This paper will report * This research was funded by the Electric Power Research Institute as part of its impacts assessment program. Notwithstanding that support, the opinions expressed here and responsibility for any errors reside with the authors. The authors express their appreciation for comments offered on earlier drafts by
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.