In longitudinal panels and other regression models with unobserved effects, fixed effects estimation is often paired with cluster-robust variance estimation (CRVE) in order to account for heteroskedasticity and un-modeled dependence among the errors. CRVE is asymptotically consistent as the number of independent clusters increases, but can be biased downward for sample sizes often found in applied work, leading to hypothesis tests with overly liberal rejection rates. One solution is to use biasreduced linearization (BRL), which corrects the CRVE so that it is unbiased under a working model, and t-tests with Satterthwaite degrees of freedom. We propose a generalization of BRL that can be applied in models with arbitrary sets of fixed effects, where the original BRL method is undefined, and describe how to apply the method when the regression is estimated after absorbing the fixed effects. We also propose a small-sample test for multiple-parameter hypotheses, which generalizes the Satterthwaite approximation for t-tests. In simulations covering a variety of study designs, we find that conventional cluster-robust Wald tests can severely under-reject while the proposed small-sample test maintains Type I error very close to nominal levels. * The authors thank Dan Knopf for helpful discussions about the linear algebra behind the cluster-robust variance estimator.
Meta-analyses often include studies that report multiple effect sizes based on a common pool of subjects or that report effect sizes from several samples that were treated with very similar research protocols. The inclusion of such studies introduces dependence among the effect size estimates. When the number of studies is large, robust variance estimation (RVE) provides a method for pooling dependent effects, even when information on the exact dependence structure is not available. When the number of studies is small or moderate, however, test statistics and confidence intervals based on RVE can have inflated Type I error. This article describes and investigates several small-sample adjustments to F-statistics based on RVE. Simulation results demonstrate that one such test, which approximates the test statistic using Hotelling's T 2 distribution, is level-a and uniformly more powerful than the others. An empirical application demonstrates how results based on this test compare to the largesample F-test.
Single case designs are a set of research methods for evaluating treatment effects by assigning different treatments to the same individual and measuring outcomes over time and are used across fields such as behavior analysis, clinical psychology, special education, and medicine. Emerging standards for single case designs have focused attention on the need for effect sizes for summarizing and meta-analyzing findings from the designs; although many effect size measures have been proposed, there is little consensus regarding their use. This article proposes a new effect size measure for single case research that is directly comparable with the standardized mean difference (Cohen's d) often used in between-subjects designs. Techniques are provided for estimating the new effect size, as well as its variance, from balanced or unbalanced treatment reversal designs. The proposed estimation methods are further evaluated using a simulation study and then demonstrated in two applications. Copyright © 2012 John Wiley & Sons, Ltd.
In prevention science and related fields, large meta-analyses are common, and these analyses often involve dependent effect size estimates. Robust variance estimation (RVE) methods provide a way to include all dependent effect sizes in a single meta-regression model, even when the exact form of the dependence is unknown. RVE uses a working model of the dependence structure, but the two currently available working models are limited to each describing a single type of dependence. Drawing on flexible tools from multilevel and multivariate meta-analysis, this paper describes an expanded range of working models, along with accompanying estimation methods, which offer potential benefits in terms of better capturing the types of data structures that occur in practice and, under some circumstances, improving the efficiency of meta-regression estimates. We describe how the methods can be implemented using existing software (the 'metafor' and 'clubSandwich' packages for R), illustrate the proposed approach in a meta-analysis of randomized trials on the effects of brief alcohol interventions for adolescents and young adults, and report findings from a simulation study evaluating the performance of the new methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.