A new in situ electrochemical method of functionalizing an oxide-free Ni surface is demonstrated using octanethiol. Initial adsorption results in a multilayer molecular film, which blocks both the hydrogen evolution reaction (HER) and re-oxidation of the Ni by ambient oxygen. However, excess octanethiol can be removed by rinsing with ethanol, leaving behind a monolayer that continues to protect against re-oxidation but gives rise to an unexpected enhancement in the HER, with a greater enhancement for longer film formation times. The presence of an octanethiol monolayer on the surface was confirmed by spectroscopic observation of the CH(2), CH(3) and thiolate groups using infra red spectroscopy, while X-ray photo-electron spectroscopy demonstrated the effectiveness of the thiol layer as a barrier to surface oxidation. The electrochemically prepared octanethiol film impedes oxidation of the Ni in air more effectively than a film formed by immersion in a solution of octanethiol in ethanol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.