Eleven subjects completed a clinical trial to determine the safety/tolerability of freeze-dried black raspberries (BRB) and to measure, in plasma and urine, specific anthocyanins-cyanidin-3-glucoside, cyanidin-3-sambubioside, cyanidin-3-rutinoside, and cyanidin-3-xylosylrutinoside, as well as ellagic acid. Subjects were fed 45 g of freeze-dried BRB daily for 7 days. Blood samples were collected predose on days 1 and 7 and at 10 time points postdose. Urine was collected for 12 hours predose on days 1 and 7 and at three 4-hour intervals postdose. Maximum concentrations of anthocyanins and ellagic acid in plasma occurred at 1 to 2 hours, and maximum quantities in urine appeared from 0 to 4 hours. Overall, less than 1% of these compounds were absorbed and excreted in urine. None of the pharmacokinetic parameters changed significantly between days 1 and 7. In conclusion, 45 g of freeze-dried BRB daily are well tolerated and result in quantifiable anthocyanins and ellagic acid in plasma and urine.
Examples of LiFePO4 composite electrodes are shown in which solid state and interfacial processes are not the principal rate limiting process during fast discharge. Rate dependence on electrode thickness, electrolyte concentration, lithium transference number, and dilution of the active material is explained by a simple salt diffusion model. A discharge to 25 % capacity (0.3 mA h) was obtained on a 40 micrometre thick electrode after only 4 s in an optimised electrolyte -aqueous Li2SO4. Publication of this paper is extrem ely urgent because it provid es an alternative m od el w ith evid ence for an alternative explanation for the recent results in a published in N ature by Kang and Ced er, concerning ultrafast d ischarge of LiFePO4. Several prom inent w orkers in the field , includ ing Ced er, are aw are of the w ork d escribed in the present m anuscript because I gave an outline of it at recent conferences. H ow ever, the significance of the w ork w as not fully appreciated until the Kang paper cam e out in March . Since then I have received countless m essages asking w here I published the m od el so they can reference the w ork. Of course, I have had to reply "com ing asap!".
School of Chemistry
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.