Alzheimer disease is an age-related neurodegenerative disorder characterized by amyloid- (A) peptide deposition into cerebral amyloid plaques. The natural polyphenol resveratrol promotes anti-aging pathways via the activation of several metabolic sensors, including the AMP-activated protein kinase (AMPK). Resveratrol also lowers A levels in cell lines; however, the underlying mechanism responsible for this effect is largely unknown. Moreover, the bioavailability of resveratrol in the brain remains uncertain. Here we show that AMPK signaling controls A metabolism and mediates the anti-amyloidogenic effect of resveratrol in non-neuronal and neuronal cells, including in mouse primary neurons. Resveratrol increased cytosolic calcium levels and promoted AMPK activation by the calcium/ calmodulin-dependent protein kinase kinase-. Direct pharmacological and genetic activation of AMPK lowered extracellular A accumulation, whereas AMPK inhibition reduced the effect of resveratrol on A levels. Furthermore, resveratrol inhibited the AMPK target mTOR (mammalian target of rapamycin) to trigger autophagy and lysosomal degradation of A. Finally, orally administered resveratrol in mice was detected in the brain where it activated AMPK and reduced cerebral A levels and deposition in the cortex. These data suggest that resveratrol and pharmacological activation of AMPK have therapeutic potential against Alzheimer disease. Alzheimer disease (AD)2 is a progressive neurodegenerative disorder and the first cause of dementia. Amyloid- (A) peptides have a central role in the pathogenesis of the disease and represent the core components of the senile plaques, the lesions invariably found in the neocortex and hippocampus of the AD brains (1, 2). In the amyloidogenic pathway, the amyloid- precursor protein (APP) is sequentially cleaved by the aspartic protease -secretase/BACE1 and by the ␥-secretase proteolytic complex to produce various A peptides, including the most abundant isoforms A1-40 and A1-42 (3, 4).Epidemiological data suggest that moderate consumption of red wine is associated with a lower incidence of dementia and AD (5). The naturally occurring polyphenol resveratrol (trans-3,4Ј,5-trihydroxystilbene), which is found in abundance in red wine, has antioxidant and neuroprotective properties in vitro and could explain, in part, the beneficial effects of wine consumption in AD (6, 7). Importantly, resveratrol controls A levels by facilitating its proteolytic clearance in cultured cell lines (8). However, the exact molecular mechanism by which resveratrol controls A metabolism is currently unknown. Furthermore, evidence is missing to support the notion that orally administered resveratrol is bioavailable and bioactive in the brain.A growing body of literature has demonstrated the beneficial effect of resveratrol on age-related metabolic deterioration and its protective role in metabolic diseases, such as type 2 diabetes and obesity. Resveratrol mimics caloric restriction by extending the lifespan of different smal...
Plants that contain high concentrations of the defense compounds of the phenylpropene class (eugenol, chavicol, and their derivatives) have been recognized since antiquity as important spices for human consumption (e.g. cloves) and have high economic value. Our understanding of the biosynthetic pathway that produces these compounds in the plant, however, has remained incomplete. Several lines of basil (Ocimum basilicum) produce volatile oils that contain essentially only one or two specific phenylpropene compounds. Like other members of the Lamiaceae, basil leaves possess on their surface two types of glandular trichomes, termed peltate and capitate glands. We demonstrate here that the volatile oil constituents eugenol and methylchavicol accumulate, respectively, in the peltate glands of basil lines SW (which produces essentially only eugenol) and EMX-1 (which produces essentially only methylchavicol). Assays for putative enzymes in the biosynthetic pathway leading to these phenylpropenes localized many of the corresponding enzyme activities almost exclusively to the peltate glands in leaves actively producing volatile oil. An analysis of an expressed sequence tag database from leaf peltate glands revealed that known genes for the phenylpropanoid pathway are expressed at very high levels in these structures, accounting for 13% of the total expressed sequence tags. An additional 14% of cDNAs encoded enzymes for the biosynthesis of S-adenosyl-methionine, an important substrate in the synthesis of many phenylpropenes. Thus, the peltate glands of basil appear to be highly specialized structures for the synthesis and storage of phenylpropenes, and serve as an excellent model system to study phenylpropene biosynthesis.
Artichoke leaf is an herbal medicine known for a long time. A systematic antioxidant activity-directed fractionation procedure was used to purify antioxidative components from the aqueous methanol extractions of artichoke heads and leaves in this study. Seven active polyphenolic compounds were purified from artichoke, and structural elucidation of each was achieved using MS and NMR. Two of these compounds, apigenin-7-rutinoside and narirutin, were found to be unique to artichoke heads, this represents the first report of these compounds in the edible portion of this plant. The contents of these antioxidants and total phenols in dried artichoke samples from leaves and immature and mature heads of three varieties, Imperial Star, Green Globe, and Violet, were then analyzed and compared by colorimetric and validated HPLC methods. Significant differences by variety and plant organ were observed.
While polyphenolic compounds have many health benefits, the potential development of polyphenols for the prevention/treatment of neurological disorders is largely hindered by their complexity as well as limited knowledge regarding their bioavailability, metabolism and bioactivity, especially in the brain. We recently demonstrated that dietary supplementation with a specific grape-derived polyphenolic preparation (GP) significantly improves cognitive function in a mouse model of Alzheimer’s disease (AD). GP is comprised of the proanthocyanidin (PAC) catechin and epicatechin in monomeric (Mo), oligomeric, and polymeric (Po) forms. In this study we report that following oral administration of the independent GP forms, only Mo is able to improve cognitive function and only Mo metabolites can selectively reach and accumulate in the brain at a concentration of ~400 nM. Most importantly we report for the first time that a biosynthetic epicatechin metabolite, 3’-O-methyl-epicatechin-5-O-β-glucuronide (3’-O-Me-EC-Gluc), one of the PAC metabolites identified in the brain following Mo treatment, promotes basal synaptic transmission and long term potentiation at physiologically relevant concentrations in hippocampus slices through mechanisms associated with cAMP response element binding protein (CREB) signaling. Our studies suggest that select brain-targeted PAC metabolites benefit cognition by improving synaptic plasticity in the brain, and provide impetus to develop 3’-O-Me-EC-Gluc and other brain-targeted PAC metabolites to promote learning and memory in Alzheimer’s disease and other forms of dementia.
The present study explored the bioavailability and brain deposition of a grape seed polyphenolic extract (GSPE) previously found to attenuate cognitive deterioration in a mouse model of Alzheimer's disease (AD). Plasma pharmacokinetic response of major GSPE phenolic components was measured following intragastric gavage of 50, 100, and 150 mg GSPE per kg body weight. Liquid chromatography-mass spectrometry (LC-MS) analysis identified gallic acid (GA), catechin (C), and epicatechin (EC) in plasma of rats gavaged acutely with GSPE. Additionally, 4-methylgallic acid (4-OMeGA), 3'-methylcatechin (3'-OMeC), and 3'-methylepicatechin (3'-OMeEC) were identified as circulating metabolites of GSPE phenolic constituents. Cmax for individual GSPE constituents and their metabolites increased in a dose-dependent fashion (with increasing GSPE oral dose). Repeated daily exposure to GSPE was found to significantly increase bioavailability (defined as plasma AUC0-8h) of GA, C, and EC by 198, 253, and 282% relative to animals receiving only a single acute GSPE dose. EC and C were not detectable in brain tissues of rats receiving a single GSPE dose but reached levels of 290.7 +/-45.9 and 576.7 +/- 227.7 pg/g in brain tissues from rats administered GSPE for 10 days. This study suggests that brain deposition of GA, C, and EC is affected by repeated dosing of GSPE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.