Introducing asexual reproduction through seeds – apomixis – into crop species could revolutionize agriculture by allowing F1 hybrids with enhanced yield and stability to be clonally propagated. Engineering synthetic apomixis has proven feasible in inbred rice through the inactivation of three genes (MiMe), which results in the conversion of meiosis into mitosis in a line ectopically expressing the BABYBOOM1 (BBM1) parthenogenetic trigger in egg cells. However, only 10–30% of the seeds are clonal. Here, we show that synthetic apomixis can be achieved in an F1 hybrid of rice by inducing MiMe mutations and egg cell expression of BBM1 in a single step. We generate hybrid plants that produce more than 95% of clonal seeds across multiple generations. Clonal apomictic plants maintain the phenotype of the F1 hybrid along successive generations. Our results demonstrate that there is no barrier to almost fully penetrant synthetic apomixis in an important crop species, rendering it compatible with use in agriculture.
Improved seed priming techniques can reduce time between seed sowing and seedling emergence, resulting in rapid and uniform seedlings emergence, high seed vigor, better and uniform stand establishment, better allometric and better yields in many field crops. The objective of this research was to understand the effects of hydropriming on rice seed physiological potential and on crop performance for upland rice systems. Therefore, the laboratory and field trials were carried out. Initially, two seed lots from two upland rice varieties were used to create imbibition curves, required to establish the priming protocols. The priming protocols (zero, as reference, 16 and 22h of priming duration) were applied and their effects on seed physiological potential were evaluated. One seed lot of primed seeds for each variety was used in field trials, carried out in two consecutive growing seasons (2013/14 and 2014/15) in a randomized complete block design, split plot scheme, with six replications. The effects of priming seeds were uniquely associated with their physiological potential, including germination and vigor, which is expected to bring benefits to the faster establishment and uniform stands in the field. However, those benefits did not extend beyond the early stages of crop development and were not observed on flowering and grain yield.
The cultivation of hybrid rice is a technology that allows for an increase in grain yield of 30% relative to the grain yield of conventional cultivars. However, the main challenge for this technology is related to seed production, which has high production costs and low seed yields. Therefore, agronomic techniques that could enhance flowering synchrony of parental lines in the field are essential for an efficient production system of hybrid rice seeds. The objective of this work was to study the effects of sowing depth, plant density and fertilization with nitrogen or phosphorus as potential techniques to increase the pollen availability in the field and, consequently, the flowering synchrony between parental lines in the production of hybrid rice seeds. The experiments were conducted during two growing seasons in the Central Region of Brazil. All of the experiments were conducted as a randomized complete block in a split plot scheme; however, the experiment with P fertilization had a factorial design. Our research allow inferring that nitrogen fertilization technique applied to the soil or foliar at the time of panicle differentiation does not affect the time of onset of flowering of rice varieties INTA Puitá CL and L106R, which are potential R lines for the production of hybrid rice. Agronomic techniques of variation in sowing depth, seeding rate and the phosphate fertilization affect the time of onset of flowering from 10 to 19 degree-days, which could represent two days in the crop cycle, for the line L106R. Such techniques constitute potential alternatives for use in hybrid rice seed production systems and could be applied in alternated blocks of R lines in the field to obtain longer periods of pollen availability in the field.
The monogenetic recessive male-sterile gene ms-IR36 is widely used to facilitate the inter-crossing phase of recurrent selection in rice (Oryza sativa), but its segregation within the progeny disturbs other breeding phases. Marker-assisted early identification of msms and Msms seedlings would help overcome this drawback. Using successively bulked segregant analysis and large F2 populations, we mapped the ms-IR36 gene to a 33-kb region on the short arm of chromosome 2 that includes 10 candidate genes. Sequencing of these candidates together with checking rice genome annotations and expression databases allowed the target to be narrowed down to one candidate gene already isolated and characterized as the tapetum degeneration retardation (TDR) gene and reported to be involved in tapetal programmed cell death. Comparison of the sequence of the TDR gene between male-sterile (MS) and male-fertile (MF) IR36 plants detected one non-synonymous nucleotide substitution affecting the active domain of the encoded protein. Perfect co-segregation was observed between polymorphism at this nucleotide (SNP) and the MS/MF phenotype of 946 F2 plants. Spatial modelling of the active domain of the candidate protein reinforced the candidate status of the only SNP identified. Histological characterization of anther development in MS IR36 revealed defects identical to the ones observed in mutants used for the isolation and characterization of the TDR gene: delayed/non-degradation of tapetum tissue and collapse of the haploid microspores. We concluded that ms-IR36 corresponded to the TDR gene with a different mutation from the earlier one described in the same gene. No significant linkage drag was associated with ms-IR36. A SNP-based marker that enables simple early identification of MS plants and MF plants with the Msms genotype was designed. (Résumé d'auteur
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.