Attenuated measles viruses (MVs) propagate selectively in human tumor cells, and phase I clinical trials are currently underway to test their oncolytic activity. A major theoretical impediment to systemic MV application is the presence of pre-existing antiviral immunity. We hypothesized that autologous MV-infected cells might be a more reliable vehicle than cell-free virions to deliver the infection to tumor cells in subjects with neutralizing titers of anti-measles antibodies. Our in vitro studies, using a dual-color fluorescent model, demonstrated efficient cell-to-cell transfer of infection via heterofusion. In contrast to infection by naked virions, heterofusion between infected cell carriers and tumor cells was more resistant to antibody neutralization. Infected monocytic, endothelial, or stimulated peripheral blood cells could deliver oncolytic MV to tumor lesions in vivo, after intravenous (i.v.) or intraperitoneal (i.p.) administration. Single or repeated i.p. injections of monocytic carriers significantly improved survival of animals bearing human ovarian cancer xenografts. Systemic or i.p. injection of MV-infected cells successfully transferred infection by heterofusion to Raji lymphomas or hepatocellular carcinoma tumors in the presence of neutralizing antibodies. These results suggest a novel strategy for systemic delivery of oncolytic virotherapy in cancer patients that can "bypass" the pre-existing humoral immunity against MV.
We recently identified circulating osteoblastic cells using antibodies to osteocalcin (OCN) or alkaline phosphatase (AP). We now provide a more detailed characterization of these cells. Specifically, we demonstrate that 46% of OCN positive (OCN pos ) cells express AP, and 37% also express the hematopoietic/endothelial marker, CD34. Using two different anti-OCN antibodies and forward/side light scatter characteristics by flow cytometry, we find that OCN pos cells consist of two distinct populations: one population exhibits low forward/side scatter, consistent with a small cell phenotype with low granularity, and a second population has higher forward/side scatter (larger and more granular cell). The smaller, low granularity population also co-expresses CD34, whereas the larger, more granular cells are CD34 negative. Using samples from 26 male subjects aged 28 to 68 years, we demonstrate that the concentration of circulating OCN pos cells increases as a function of age (R = 0.59, P = 0.002). By contrast, CD34 pos cells tend to decrease with age (R = −0.31, P = 0.18); as a consequence, the ratio of OCN pos :CD34 pos cells also increases significantly with age (R = 0.54, P = 0.022). These findings suggest significant overlap between circulating cells expressing OCN and those expressing the hematopoietic/endothelial marker, CD34. Further studies are needed to define the precise role of circulating OCN pos cells not only in bone remodeling but rather also potentially in the response to vascular injury.
Hydrogels are potentially useful for many purposes in regenerative medicine including drug and growth factor delivery, as single scaffold for bone repair or as a filler of pores of another biomaterial in which host mesenchymal progenitor cells can migrate in and differentiate into matrix-producing osteoblasts. Collagen type I is of special interest as it is a very important and abundant natural matrix component. The purpose of this study was to investigate whether rat bone marrow stromal cells (rBMSCs) are able to adhere to, to survive, to proliferate and to migrate in collagen type I hydrogels and whether they can adopt an osteoblastic fate. rBMSCs were obtained from rat femora and plated on collagen type I hydrogels. Prior to harvest by day 7, 14, and 21, hydrogels were fluorescently labeled, cryo-cut and analyzed by fluorescent-based and laser scanning confocal microscopy to determine cell proliferation, migration, and viability. Osteogenic differentiation was determined by alkaline phosphatase activity. Collagen type I hydrogels allowed the attachment of rBMSCs to the hydrogel, their proliferation, and migration towards the inner part of the gel. rBMSCs started to differentiate into osteoblasts as determined by an increase in alkaline phosphatase activity after two weeks in culture. This study therefore suggests that collagen type I hydrogels could be useful for musculoskeletal regenerative therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.