The N,N',N'',N'''-1,2,4,5-tetra(ethylhexanoate) pyromellitamide is found to be capable of both intermolecular aggregation and binding to small anions. It is synthesized by aminolysis of pyromellitic anhydride with ethanolamine, followed by a reaction with hexanoyl chloride. The single-crystal X-ray structure of the pyromellitamide shows that it forms one-dimensional columnar stacks through an intermolecular hydrogen-bonding network. It also forms self-assembled gels in nonpolar solvents, presumably by a hydrogen-bonding network similar to the solid-state structure as shown by IR and XRD studies. Aggregation by intermolecular hydrogen bonding of the pyromellitamide is also observed by NMR and IR in solution. Fitting of NMR dilution data for pyromellitamide in d6-acetone to a cooperative aggregation model gave KE=232 M-1 and positive cooperativity of aggregation (rho=0.22). The pyromellitamide binds to a range of small anions with the binding strength decreasing in the order chloride>acetate>bromide>nitrate approximately iodide. The data indicate that the pyromellitamide binds two anions and that it displays negative cooperativity. The intermolecular aggregation of the pyromellitamide can also be altered using small anion stimuli; anion addition to preformed self-assembled pyromellitamide gels causes their collapse. The kinetics of anion-induced gel collapse are qualitatively correlated to the binding affinities of the same anions in solution. The cooperative anion binding properties and the sensitivity of the self-assembled gels formed by pyromellitamide toward anions could be useful in the development of sensors and switching/releasing devices.
Specific peptide sequences designed by inspection of protein–protein interfaces have been identified and used as tectons in hybrid functional materials. Here, an 8‐mer peptide derived from an interface of the peroxiredoxin family of self‐assembling proteins is exploited to encode the assembly of the perylene imide‐based organic semiconductor building blocks. By augmenting the peptide with additional functionality to trigger aggregation and manipulate the directionality of peptide‐semiconductor coupling, a series of hybrid materials based on the natural peptide interface is presented. Using spectroscopic probes, the mode of self‐assembly and the electronic coupling between neighboring perylene units is shown to be strongly affected by the number of peptides attached, and by their backbone directionality. The disubstituted material with peptides extending in the N to C direction away from the perylene core exhibits strong coupling and long‐range order, both attractive properties for electronic device applications. A bio‐organic field‐effect transistor is fabricated using this material, highlighting the possibilities of exploiting natural peptide tectons to encode self‐assembly in other functional materials and devices.
Synthetic peptides offer enormous potential to encode the assembly of molecular electronic components, provided that the complex range of interactions is distilled into simple design rules. Here, we report a spectroscopic investigation of aggregation in an extensive series of peptide-perylene diiimide conjugates designed to interrogate the effect of structural variations. By fitting different contributions to temperature dependent optical absorption spectra, we quantify both the thermodynamics and the nature of aggregation for peptides by incrementally varying hydrophobicity, charge density, length, as well as asymmetric substitution with a hexyl chain, and stereocenter inversion. We find that coarse effects like hydrophobicity and hexyl substitution have the greatest impact on aggregation thermodynamics, which are separated into enthalpic and entropic contributions. Moreover, significant peptide packing effects are resolved via stereocenter inversion studies, particularly when examining the nature of aggregates formed and the coupling between π electronic orbitals. Our results develop a quantitative framework for establishing structure-function relationships that will underpin the design of self-assembling peptide electronic materials.
The gelation and aggregation properties of a newly synthesized structurally simplified tetrahexyl pyromellitamide 2 have been studied and compared to the previously reported tetra(ethylhexanoate) pyromellitide 1, indicating that the ester groups in the latter significantly impede its aggregation. Morphology studies (AFM and TEM) on the aggregates formed by tetrahexyl pyromellitamide 2 in cyclohexane revealed highly uniform aggregates with different dimensions at different starting concentrations, suggesting that this molecule aggregates in a hierarchical fashion from a one-dimensional supramolecular polymer through hollow tubes or compressed helices to a network structure and then to a gel. This hypothesis is further supported by viscosity measurements that indicate a crossover point where individual supramolecular fibers get entangled at concentrations above ca. 3 mM in cyclohexane. Addition of 1 equiv of tetraalkylammonium salts of chloride or bromide, however, caused the viscosities of these pyromellitamide solutions to drop by a factor of 2-3 orders of magnitude, demonstrating the sensitivity of these aggregates to the presence of small anions. The sensitivity to anions does depend on the solubility of the salts used as small anion salts with little solubility in cyclohexane did not show this effect. Time-dependent viscosity studies showed that the aggregation of pyromellitamide 2 follows an exponential rate law, possibly related to the columnar rearrangements that are associated with the observed 6 angstroms contraction in d spacing in the XRD pattern of these gels. These results, particularly on the importance of kinetics of aggregation of self-assembled pyromellitamide gels, will be useful for future development of related materials for a number of applications, including tissue engineering and drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.