Cationic amphiphilic peptides have been engineered to target both Gram-positive and Gram-negative bacteria while avoiding damage to other cell types. However, the exact mechanism of how these peptides target, bind, and disrupt bacterial cell membranes is not understood. One specific peptide that has been engineered to selectively capture bacteria is WLBU2 (sequence: RRWVRRVRRWVRRVVRVVRRWVRR). It has been suggested that WLBU2 activity stems from the fact that when interacting with bacterial cell membranes the peptide assumes an α-helical structure and inserts itself into the membrane. Alternatively, in the presence of mammalian cell membranes, the peptide assumes an inert β-sheet structure. To test this hypothesis, the authors applied sum frequency generation (SFG) spectroscopy and surface tensiometry to identify the structure of WLBU2 as it interacts with model lipid monolayers that mimic mammalian and bacterial cell membranes. Model mammalian cell membranes were built upon zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine lipids while bacterial cell membranes were constructed with negatively charged 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) lipids. Observed changes in surface pressure at the peptide-lipid-air interface demonstrate that the peptide has a clear binding preference toward negatively charged bacteria-like lipids. The structure of both the lipids and peptides were characterized by SFG spectra collected at the monolayer interface. Changes in monolayer structure as the peptide binds were observed by tracking the intensities of SFG vibrational modes related to the acyl chains within the lipids. Peptide structures when bound to both types of lipids were determined by SFG spectra collected within the amide I vibrational band. The SFG spectra of WLBU2 interacting with the model mammalian lipid monolayer contain two peaks near 1642 and 1678 cm indicative of an inactive β-sheet structure. SFG spectra collected from the peptide bound to a bacteria-like lipid monolayer contains just a single peak near 1651 cm which corresponds to an active α-helix structure. Combined, the tensiometry and SFG results demonstrate that WLBU2 both possesses a higher binding affinity toward and is in an active α-helix structure when bound to bacterial cell membranes.
Frogs capture their prey with a highly specialized tongue. Recent studies indicate this tongue is covered with fibril-forming mucus that acts as a pressure sensitive adhesive. However, no analysis of the interfacial chemistry of frog tongue mucus has been performed. The goal of this study is to examine the chemical structure of the surface of mucus after a tongue strike. Previous studies of mucus from other animals suggest that mucus from a frog's tongue consists of mucins—serine-, threonine-, and proline-rich glycoproteins. Therefore, the authors expect to observe chemical bonds associated with glycoproteins, as well as fibrils formed at the mucus–tongue interface. To test this hypothesis, they collected both near-edge x-ray absorption fine structure (NEXAFS) microscopy images and sum frequency generation (SFG) vibrational spectra from layers of mucus left after frog tongue strikes on cleaned glass slides. NEXAFS imaging demonstrates a uniform distribution of amide, hydroxyl, and carbon–carbon bonds across the mucus surface. Difference spectra of individual N1s and C1s K-edge spectra pulled from these images indicate a structure consistent with fibril formation as well as disorder of oligosaccharide groups near the mucus surface. C—H region SFG spectra reveal surface active modes which likely stem from serine and threonine within the mucin protein. Combined, this work suggests that glycoproteins are well-ordered at the mucus–tongue interface.
Note: This paper is part of the Biointerphases Special Topic Collection on Biomimetics of Biointerfaces.
There is substantial motivation to develop novel adhesives which take advantage of the superior adhesive strength and adaptability of many natural animal adhesives; however, the tools typically used to study these mechanisms are incapable of determining the precise interactions of molecules at an adhesive interface. In this study, a surface specific, order sensitive vibrational spectroscopy called sum frequency generation (SFG) is, for the first time, combined with multiple bulk characterization techniques to examine a novel, simple biomimetic adhesive fluid inspired by tarsal fluid of insects. Insects perform complex adhesive demands, including sticking, climbing vertically and running upside-down with little difficulty. Thus, we hypothesize that both bulk and surface specific properties of the fluid contribute to the success of this wet adhesive mechanism. SFG spectra of biomimetic emulsion exhibited similar hydrocarbon organization on hydrophobic and hydrophilic substrates to natural beetle fluid previously studied with the same method. Bulk characterization techniques indicated that the emulsion had a shear-thinning profile with the ability to enhance traction forces during climbing and low surface tension ideal for surface wetting on the majority of natural surfaces. Multi-technique comparisons between emulsion and pure squalane revealed that a hydrocarbon only based fluid could not replicate the traction promoting properties of the emulsion. We conclude that the insect tarsal fluid adhesive mechanism relies upon contributions from both surface-specific properties optimizing traction force and bulk properties promoting rapid surface wetting and maintaining pull-off force for fast detachment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.