Summary
1.Energy expenditure in wild animals can be limited (i) intrinsically by physiological processes that constrain an animal's capacity to use energy, (ii) extrinsically by energy availability in the environment and/or (iii) strategically based on trade-offs between elevated metabolism and survival. Although these factors apply to all individuals within a population, some individuals expend more or less energy than other individuals. 2. To examine the role of an energy ceiling in a species with a high and individually repeatable metabolic rate, we compared energy expenditure of thick-billed murres (Uria lomvia) with and without handicaps during a period of peak energy demand (chick-rearing, N = 16). We also compared energy expenditure of unencumbered birds (N = 260) across 8 years exhibiting contrasting environmental conditions and correlated energy expenditure with fitness (reproductive success and survival). 3. Murres experienced an energy ceiling mediated through behavioural adjustments. Handicapped birds decreased time spent flying/diving and chick-provisioning rates such that overall daily energy expenditure remained unchanged across the two treatments. The energy ceiling did not reflect energy availability or trade-offs with fitness, as energy expenditure was similar across contrasting foraging conditions and was not associated with reduced survival or increased reproductive success. 4. We found partial support for the trade-off hypothesis as older murres, where prospects for future reproduction would be relatively limited, did overcome an energy ceiling to invest more in offspring following handicapping by reducing their own energy reserves. The ceiling therefore appeared to operate at the level of intake (i.e. digestion) rather than expenditure (i.e. thermal constraint, oxidative stress). 5. A meta-analysis comparing responses of breeding animals to handicapping suggests that our results are typical: animals either reduced investment in themselves or in their offspring to remain below an energy ceiling. Across species, whether a handicapped individual invested in its own energy stores or its offspring's growth was not explained by life history (future vs. current reproductive potential). Many breeding animals apparently experience an intrinsic energy ceiling, and increased energy costs lead to a decline in self-maintenance and/or offspring provisioning.
American water shrews (Sorex palustris) are aggressive predators that feed on a variety of terrestrial and aquatic prey. They often forage at night, diving into streams and ponds in search of food. We investigated how shrews locate submerged prey using highspeed videography, infrared lighting, and stimuli designed to mimic prey. Shrews attacked brief water movements, indicating motion is an important cue used to detect active or escaping prey. They also bit, retrieved, and attempted to eat model fish made of silicone in preference to other silicone objects showing that tactile cues are important in the absence of movement. In addition, water shrews preferentially sniffed model prey fish and crickets underwater by exhaling and reinhaling air through the nostrils, suggesting olfaction plays an important role in aquatic foraging. The possibility of echolocation, sonar, or electroreception was investigated by testing for ultrasonic and audible calls above and below water and by presenting electric fields to foraging shrews. We found no evidence for these abilities. We conclude that water shrews detect motion, shape, and smell to find prey underwater. The short latency of attacks to water movements suggests shrews may use a flush-pursuit strategy to capture some prey.insectivore ͉ olfaction ͉ somatosensory ͉ tactile ͉ whiskers
Richardson's ground squirrels, Spermophilus richardsonii, produce both repetitive and non-repetitive antipredator calls. While many hypotheses have been advanced to explain non-repetitive calls, the function of repetitive calling has received relatively little attention. We presented juvenile Richardson's ground squirrels with a predator model at distances ranging from 1 to 8 m and recorded the subsequent repetitive calls on digital audiotape. The rate of calling was inversely correlated with the distance between the model and the caller, with distance explaining almost 24% of the variation in call rate. To determine whether call recipients use that information, we manipulated the intersyllable latency of a single repetitive call exemplar to form 3 test stimuli varying only in call rate. Across 16 Richardson's ground squirrel colonies to which these calls were broadcast, the proportion of squirrels assuming the highly vigilant, alert posture increased with the rate of the repetitive call presented. Hence, juvenile Richardson's ground squirrels appear to communicate the proximity and presumably the degree of threat posed by potential predators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.