Aequorin is a calcium-sensitive photoprotein originally obtained from the jellyfish Aequorea aequorea. Because it has a high sensitivity to calcium ions and is biologically harmless, aequorin is widely used as a probe to monitor intracellular levels of free calcium. The aequorin molecule contains four helix-loop-helix 'EF-hand' domains, of which three can bind calcium. The molecule also contains coelenterazine as its chromophoric ligand. When calcium is added, the protein complex decomposes into apoaequorin, coelenteramide and CO2, accompanied by the emission of light. Apoaequorin can be regenerated into active aequorin in the absence of calcium by incubation with coelenterazine, oxygen and a thiol agent. Cloning and expression of the complementary DNA for aequorin were first reported in 1985 (refs 2, 6), and growth of crystals of the recombinant protein has been described; however, techniques have only recently been developed to prepare recombinant aequorin of the highest purity, permitting a full crystallographic study. Here we report the structure of recombinant aequorin determined by X-ray crystallography. Aequorin is found to be a globular molecule containing a hydrophobic core cavity that accommodates the ligand coelenterazine-2-hydroperoxide. The structure shows protein components stabilizing the peroxide and suggests a mechanism by which calcium activation may occur.
MarR is a regulator of multiple antibiotic resistance in Escherichia coli. It is the prototypical member of the MarR family of regulatory proteins found in bacteria and archaea that play important roles in the development of antibiotic resistance, a global health problem. Here we describe the crystal structure of the MarR protein, determined at a resolution of 2.3 A. This is the first reported crystal structure of a member of this newly-described protein family. The structure shows MarR as a dimer with each subunit containing a winged-helix DNA binding motif.
Annexins are a family of calcium- and phospholipid-binding proteins implicated in mediating membrane-related processes such as secretion, signal transduction, and ion channel activity. The crystal structure of rat annexin V was solved to 1.9 angstrom resolution by multiple isomorphous replacement. Unlike previously solved annexin V structures, all four domains bound calcium in this structure. Calcium binding in the third domain induced a large relocation of the calcium-binding loop regions, exposing the single tryptophan residue to the solvent. These alterations in annexin V suggest a role for domain 3 in calcium-triggered interaction with phospholipid membranes.
Xenopus NO38 is an abundant nucleolar chaperone and a member of the nucleoplasmin (Np) family. Here, we report high-resolution crystal structures of the N-terminal domain of NO38, as a pentamer and a decamer. As expected, NO38 shares the Np family fold. In addition, NO38- and Np-core pentamers each use highly conserved residues and numerous waters to form their respective decamers. Further studies show that NO38 and Np each bind equal amounts of the four core histones. However, NO38 prefers the (H3-H4)(2) tetramer, while Np probably prefers H2A-H2B dimers. We also show that NO38 and Np will each bind noncognate histones when the preferred partner is absent. We suggest that these chaperones must form decamers in order to bind histones and differentiate between histone tetramers and dimers. When taken together, these data imply that NO38 may function as a histone chaperone in the nucleolus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.