Abstract-Wireless power transfer via magnetic resonant coupling is experimentally demonstrated in a system with a large source coil and either one or two small receivers. Resonance between source and load coils is achieved with lumped capacitors terminating the coils. A circuit model is developed to describe the system with a single receiver, and extended to describe the system with two receivers. With parameter values chosen to obtain good fits, the circuit models yield transfer frequency responses that are in good agreement with experimental measurements over a range of frequencies that span the resonance. Resonant frequency splitting is observed experimentally and described theoretically for the multiple receiver system. In the single receiver system at resonance, more than 50% of the power that is supplied by the actual source is delivered to the load. In a multiple receiver system, a means for tracking frequency shifts and continuously retuning the lumped capacitances that terminate each receiver coil so as to maximize efficiency is a key issue for future work.
The interface between two miscible fluids which have identical mechanical properties but disparate electrical conductivities and are stressed by an equilibrium tangential electric field is studied experimentally and theoretically. A bulk-coupled electrohydrodynamic instability associated with the diffusive distribution of fluid conductivity at the interface is experimentally observed.The configuration is modelled using a layer of exponentially varying conductivity spliced on each surface to a constant-conductivity fluid half-space. Over-stable (propagating) modes are discovered and characterized in terms of the complex growth rate and fastest growing wavenumber, with the conductivity ratio and an inertia-viscosity time-constant ratio as parameters. In the low inertia limit, growth rates are governed by the electric-viscous time τ = η/εE2. Instability is found also with the layer of varying conductivity bounded by rigid equipotential walls. A physical mechanism leading to theoretically determined fluid streamlines in the form of propagating cells is described.At relatively high electric fields, large-scale mixing of the fluid components is observed. Photocell measurements of distributions of average fluid properties demonstrate evolution in time on a scale determined by τ.
Scaling laws for field induced mixing of a semi-insulating liquid of uniform viscosity η and permittivity ε, but of inhomogeneous conductivity, are deduced for motions with characteristic times long compared with viscous-diffusion and charge relaxation times. In an electric field, E, time is shown to scale with electric-viscous time τev=η/εE2. An experiment involving mixing of a highly conducting thin layer into a lesser conducting bulk region uses temporal current evolution to confirm scaling. A simple mixing model is shown to correlate with experimental results. Linear instability mechanisms underlying the mixing process are described by a bulk-coupled model, with viscous diffusion effects included. Eigenfrequencies are determined as they depend on conductivity variation and ratio of viscous diffusion to electric-viscous time. Static instabilities and overstabilities are predicted. Corresponding eigenfunctions and streamlines lend insights into the onset of instability leading to a turbulent mixing state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.