Background Alirocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), lowers plasma low density lipoprotein cholesterol (LDL-C) and apolipoprotein B100 (apoB). Although studies in mice and cells have identified increased hepatic LDL receptors as the basis for LDL lowering by PCSK9 inhibitors, there have been no human studies characterizing the effects of PCSK9 inhibitors on lipoprotein metabolism. In particular, it is not known if inhibition of PCSK9 has any effects on very low density lipoprotein (VLDL) or intermediate density lipoprotein (IDL) metabolism. Inhibition of PCSK9 also results in reductions of plasma Lp(a) levels. The regulation of plasma Lp(a) levels, including the role of LDL receptors (LDLRs) in the clearance of Lp(a), is poorly defined, and there have been no mechanistic studies of the Lp(a) lowering by alirocumab in humans. Methods Eighteen (10F, 8M) participants completed a placebo-controlled, two-period study. They received 2 doses of placebo, 2 weeks apart, followed by 5 doses of 150 mg of alirocumab, 2 weeks apart. At the end of each period, fractional clearance rates (FCR) and production rates (PR) of apoB and apo(a) were determined. In 10 participants, postprandial triglycerides (TG) and apoB48 levels were measured. Results Alirocumab reduced ultracentrifugally isolated LDL-C by 55.1%, LDL-apoB by 56.3%, and plasma Lp(a) by 18.7%. The fall in LDL-apoB was due to an 80.4% increase in LDL-apoB FCR and a 23.9% reduction in LDL-apoB PR. The latter was associated with a 46.1% increase in IDL-apoB FCR coupled with a 27.2% decrease in conversion of IDL to LDL. The FCR of apo(a) tended to increase (24.6%) without any change in apo(a) PR. Alirocumab had no effects on FCRs or PRs of VLDL-apoB and VLDL-TG, or on postprandial plasma TG or apoB48 concentrations. Conclusions Alirocumab decreased LDL-C and LDL-apoB by increasing IDL- and LDL-apoB FCRs, and decreasing LDL-apoB PR. These results are consistent with increases in LDLRs available to clear IDL and LDL from blood during PCSK9 inhibition. The possible increase in apo(a) FCR during alirocumab treatment suggests that increased LDLRs may also play a role in the reduction of plasma Lp(a). Clinical Trials Registration Clinical trials.gov # NCT01959971
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.