Background Alirocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), lowers plasma low density lipoprotein cholesterol (LDL-C) and apolipoprotein B100 (apoB). Although studies in mice and cells have identified increased hepatic LDL receptors as the basis for LDL lowering by PCSK9 inhibitors, there have been no human studies characterizing the effects of PCSK9 inhibitors on lipoprotein metabolism. In particular, it is not known if inhibition of PCSK9 has any effects on very low density lipoprotein (VLDL) or intermediate density lipoprotein (IDL) metabolism. Inhibition of PCSK9 also results in reductions of plasma Lp(a) levels. The regulation of plasma Lp(a) levels, including the role of LDL receptors (LDLRs) in the clearance of Lp(a), is poorly defined, and there have been no mechanistic studies of the Lp(a) lowering by alirocumab in humans. Methods Eighteen (10F, 8M) participants completed a placebo-controlled, two-period study. They received 2 doses of placebo, 2 weeks apart, followed by 5 doses of 150 mg of alirocumab, 2 weeks apart. At the end of each period, fractional clearance rates (FCR) and production rates (PR) of apoB and apo(a) were determined. In 10 participants, postprandial triglycerides (TG) and apoB48 levels were measured. Results Alirocumab reduced ultracentrifugally isolated LDL-C by 55.1%, LDL-apoB by 56.3%, and plasma Lp(a) by 18.7%. The fall in LDL-apoB was due to an 80.4% increase in LDL-apoB FCR and a 23.9% reduction in LDL-apoB PR. The latter was associated with a 46.1% increase in IDL-apoB FCR coupled with a 27.2% decrease in conversion of IDL to LDL. The FCR of apo(a) tended to increase (24.6%) without any change in apo(a) PR. Alirocumab had no effects on FCRs or PRs of VLDL-apoB and VLDL-TG, or on postprandial plasma TG or apoB48 concentrations. Conclusions Alirocumab decreased LDL-C and LDL-apoB by increasing IDL- and LDL-apoB FCRs, and decreasing LDL-apoB PR. These results are consistent with increases in LDLRs available to clear IDL and LDL from blood during PCSK9 inhibition. The possible increase in apo(a) FCR during alirocumab treatment suggests that increased LDLRs may also play a role in the reduction of plasma Lp(a). Clinical Trials Registration Clinical trials.gov # NCT01959971
Effects of mipomersen, an apolipoprotein B100 antisense, on lipoprotein (a) metabolism in healthy subjects. J LipidRes. 2018. 59: 2397-2402.Supplementary key words fractional clearance rate • production rate • apoB antisense treatment Lipoprotein (a) [Lp(a)] is a lipoprotein particle similar in lipid and protein composition to LDL. It is present in plasma mainly in the density range of 1.019 to 1.120 g/ml and has recently been described as a carrier of proinflammatory oxidized phospholipids (1). The hallmark of the particle is apo(a) bound to apolipoprotein B100 (apoB) by a disulfide linkage between cysteine 4326 in apoB and cysteine 4057 in apo(a) kringle IV type 9 (2). Apo(a) is highly glycosylated and is variable in length depending on the number of repeats of kringle IV type 2, which range from 3 to greater than 40 (3). Mendelian randomization (4, 5) and epidemiological cohort studies (6, 7) have shown an increase in CVD risk in individuals with smaller apo(a) isoforms and higher plasma levels of Lp(a). In a meta-analysis of 36 prospective studies with 126,634 participants, a linear relationship was found between Lp(a) levels and CVD risk (7,8). These studies, together with the potential for marked reductions in Lp(a) by novel LDL cholesterol (LDL-C) and apo(a)-specific lowering treatments (9-13), have reignited interest in pathways that regulate plasma Lp(a) levels (14).Mipomersen is an apoB antisense oligonucleotide approved for the treatment of patients with homozygous Abstract Elevated lipoprotein (a) [Lp(a)] levels increase the risk for CVD. Novel treatments that decrease LDL cholesterol (LDL-C) have also shown promise for reducing Lp(a) levels. Mipomersen, an antisense oligonucleotide that inhibits apoB synthesis, is approved for the treatment of homozygous familial hypercholesterolemia. It decreases plasma levels of LDL-C by 25% to 39% and lowers levels ofLp(a) by 21% to 39%. We examined the mechanisms for Lp(a) lowering during mipomersen treatment. We enrolled 14 healthy volunteers who received weekly placebo injections for 3 weeks followed by weekly injections of mipomersen for 7 weeks. Stable isotope kinetic studies were performed using deuterated leucine at the end of the placebo and mipomersen treatment periods. The fractional catabolic rate (FCR) of Lp(a) was determined from the enrichment of a leucine-containing peptide specific to apo(a) by LC/MS. The production rate (PR) of Lp(a) was calculated from the product of Lp(a) FCR and Lp(a) concentration (converted to pool size). In a diverse population, mipomersen reduced plasma Lp(a) levels by 21%. In the overall study group, mipomersen treatment resulted in a 27% increase in the FCR of Lp(a) with no significant change in PR. However, there was heterogeneity in the response to mipomersen therapy, and changes in both FCRs and PRs affected the degree of change in Lp(a) concentrations. Mipomersen treatment decreases Lp(a) plasma levels mainly by increasing the FCR of Lp(a), although changes in Lp(a) PR were significant predictors of reductions in Lp(a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.