Basic fibroblast growth factor (bFGF) and acidic fibroblast growth factor (aFGF) are involved in the induction of embryonic mesoderm, angiogenesis, neuronal differentiation, and proliferation and survival of many cell types. In cardiac myocytes their roles are not well understood. Effects of fibroblast growth factors on reexpression of fetal actin genes have been reported. In freshly isolated adult rat cardiac myocytes, bFGF mRNA was not detectable by in situ hybridization, although the cells contained significant amounts of bFGF and aFGF as quantified by radioimmunoassays, mitogen assays with immunoneutralization, and Western blotting. After culturing, bFGF mRNA was detected (aFGF mRNA was not studied), and the cells contained 2.5-fold more bFGF and 60o more aFGF than freshly isolated cells. The FGFs were not found in conditioned medium. They were localized, especially in cultured cells, to the nucleus. Cultured myocytes bound fourfold more 1251-FGF than freshly isolated cells and expressed the fibroblast growth factor R-1 (fig) gene. The addition of bFGF or aFGF in serum-free medium to pure populations of myocytes (after 10 days in culture, at which time they are spread, beating, and multinucleated) led to increased thymidine incorporation. Expression of fibroblast growth factors and fibroblast growth factor receptors by adult cardiac myocytes that survive the shock and "dedifferentiation" of culturing may contribute to DNA synthesis and, by analogy, to other cell types, to regulation of ribosomal and actin genes, and to cell survival. These possibilities and their in vivo relevance will require further study. (Circulation Research 1992;71:251-259 Recently, we and others extracted aFGF and bFGF from normal human hearts,4-6 from bovine and canine hearts,57 from brain,5 and from freshly isolated adult rat cardiac myocytes.8 The roles of these factors in these nondividing cells are not known. It is known that proliferating skeletal myoblasts, when deprived of FGF in vitro, become irreversibly postmitotic, because of permanent loss of FGF receptors within hours after FGF withdrawal.9"10 In cultured neonatal cardiac myocytes, administration of bFGF and aFGF has different effects on DNA synthesis and expression of actin iso-