The growing interconnectivity of socioeconomic systems requires one to treat multiple relevant social and economic variables simultaneously as parts of a strongly interacting complex system. Here, we analyze and exploit correlations between the price fluctuations of selected cryptocurrencies and social media activities, and develop a predictive framework using noise-correlated stochastic differential equations. We employ the standard Geometric Brownian Motion to model cryptocurrency rates, while for social media activities and trading volume of cryptocurrencies we use the Geometric Ornstein-Uhlenbeck process. In our model, correlations between the different stochastic variables are introduced through the noise in the respective stochastic differential equation. Using a Maximum Likelihood Estimation on historical data of the corresponding cryptocurrencies and social media activities we estimate parameters, and using the observed correlations, forecast selected time series. We successfully analyze and predict cryptocurrency related social media and the cryptocurrency market itself with a reasonable degree of accuracy. In particular, we show that our method has impressive accuracy in predicting whether a cryptocurrency market will increase or decrease a day in the future, a significant result with regards to investing and trading cryptocurrencies.
Social media are decentralized, interactive, and transformative, empowering users to produce and spread information to influence others. This has changed the dynamics of political communication that were previously dominated by traditional corporate news media. Having hundreds of millions of tweets collected over the 2016 and 2020 U.S. presidential elections gave us a unique opportunity to measure the change in polarization and the diffusion of political information. We analyze the diffusion of political information among Twitter users and investigate the change of polarization between these elections and how this change affected the composition and polarization of influencers and their retweeters. We identify "influencers" by their ability to spread information and classify them into those affiliated with a media organization, a political organization, or unaffiliated. Most of the top influencers were affiliated with media organizations during both elections. We found a clear increase from 2016 to 2020 in polarization among influencers and among those whom they influence. Moreover, 75% of the top influencers in 2020 were not present in 2016, demonstrating that such status is difficult to retain. Between 2016 and 2020, 10%
Social media has been transforming political communication dynamics for over a decade. Here using nearly a billion tweets, we analyse the change in Twitter’s news media landscape between the 2016 and 2020 US presidential elections. Using political bias and fact-checking tools, we measure the volume of politically biased content and the number of users propagating such information. We then identify influencers—users with the greatest ability to spread news in the Twitter network. We observe that the fraction of fake and extremely biased content declined between 2016 and 2020. However, results show increasing echo chamber behaviours and latent ideological polarization across the two elections at the user and influencer levels.
Understanding why people join, stay, or leave social groups is a central question in the social sciences, including computational social systems, while modeling these processes is a challenge in complex networks. Yet, the current empirical studies rarely focus on group dynamics for lack of data relating opinions to group membership. In the NetSense data, we find hundreds of face-to-face groups whose members make thousands of changes of memberships and opinions. We also observe two trends: opinion homogeneity grows over time, and individuals holding unpopular opinions frequently change groups. These observations and data provide us with the basis on which we model the underlying dynamics of human behavior. We formally define the utility that members gain from ingroup interactions as a function of the levels of homophily of opinions of group members with opinions of a given individual in this group. We demonstrate that so-defined utility applied to our empirical data increases after each observed change. We then introduce an analytical model and show that it accurately recreates the trends observed in the NetSense data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.