Sentence compression holds promise for many applications ranging from summarization to subtitle generation. Our work views sentence compression as an optimization problem and uses integer linear programming (ILP) to infer globally optimal compressions in the presence of linguistically motivated constraints. We show how previous formulations of sentence compression can be recast as ILPs and extend these models with novel global constraints. Experimental results on written and spoken texts demonstrate improvements over state-of-the-art models.
Sentence compression holds promise for many applications ranging from summarization to subtitle generation. The task is typically performed on isolated sentences without taking the surrounding context into account, even though most applications would operate over entire documents. In this article we present a discourse-informed model which is capable of producing document compressions that are coherent and informative. Our model is inspired by theories of local coherence and formulated within the framework of integer linear programming. Experimental results show significant improvements over a state-of-the-art discourse agnostic approach.
Integer Linear Programming has recently been used for decoding in a number of probabilistic models in order to enforce global constraints. However, in certain applications, such as non-projective dependency parsing and machine translation, the complete formulation of the decoding problem as an integer linear program renders solving intractable. We present an approach which solves the problem incrementally, thus we avoid creating intractable integer linear programs. This approach is applied to Dutch dependency parsing and we show how the addition of linguistically motivated constraints can yield a significant improvement over stateof-the-art.
The ability to compress sentences while preserving their grammaticality and most of their meaning has recently received much attention. Our work views sentence compression as an optimisation problem. We develop an integer programming formulation and infer globally optimal compressions in the face of linguistically motivated constraints. We show that such a formulation allows for relatively simple and knowledge-lean compression models that do not require parallel corpora or largescale resources. The proposed approach yields results comparable and in some cases superior to state-of-the-art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.