The nested-subset hypothesis of Patterson and Atmar states that species composition on islands with less species richness is a proper subset of those on islands with greater species richness. The sum of species absences, referred to as gaps, was suggested as a metric for nestedness, and null models have been used to test whether or not island species exhibited nestedness. Simberloff and Martin stated that finding examples of non-nested faunas was difficult. We revisit previous analyses of nested faunas and introduce a new metric we call "discrepancy" which we recommend as a measure for nestedness. We also recommend that the sample spaces conserve both row sums (number of species per site) and column sums (number of sites per species) derived from the incidence matrix. We compare our results to previous analyses.
We study preheating in a general class of supersymmetric hybrid inflation model. Supersymmetry leads to only one coupling constant in the potential and thus only one natural frequency of oscillation for the homogeneous fields, whose classical evolution consequently differs from that of a general (non-supersymmetric) hybrid model. We emphasise the importance of mixing effects in these models which can significantly change the rate of production of particles. We perform a general study of the rate of production of the particles associated with the homogeneous fields, and show how preheating is efficient in producing these quanta. Preheating of other particle species will be model dependent, and in order to investigate this we consider a realistic working model of supersymmetric hybrid inflation which solves the strong-CP problem via an approximate Peccei-Quinn symmetry, which was proposed by us previously. We study axion production in this model and show that properly taking into account the mixing between the fields suppresses the axion production, yet enhances the production of other particles. Finally we demonstrate the importance of backreaction effects in this model which have the effect of shutting off axion production, leaving the axion safely within experimental bounds.
Patterns in species occurrences on islands have been analyzed by several authors. At issue is the number of non-occurring pairs of species (also known as checkerboards). Previous authors have suggested that if the number of checkerboards differs from what is expected by chance, then island communities might have been structured by competition. Investigators have pursued this problem by first generating random (or null) matrices and then testing a metric derived from the collection of null matrices against the metric calculated from the actual species co-occurrence matrix. The random matrices were constrained by requiring the number of species on each island, and the number of islands on which each species occurred to be equal to their observed values. We show that results from previous studies are generally flawed. We present a fast, efficient algorithm to generate null matrices for any set of fixed row and column sums, and propose a modification of a previously proposed metric as a test statistic. We evaluated the efficacy of our construction method for null creation and our metric using incidence matrices from the avifauna of Vanuatu (formerly New Hebrides).
Humans depend on biodiversity in myriad ways, yet species are being rapidly lost due to human activities. The ecosystem services approach to conservation tries to establish the value that society derives from the natural world such that the true cost of proposed development actions becomes apparent to decision makers. Species are an integral component of ecosystems, and the value they provide in terms of services should be a standard part of ecosystem assessments. However, assessing the value of species is difficult and will always remain incomplete. Some of the most difficult species' benefits to assess are those that accrue unexpectedly or are wholly unanticipated. In this review, we consider recent examples from a wide variety of species and a diverse set of ecosystem services that illustrate this point and support the application of the precautionary principle to decisions affecting the natural world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.