Most reward-related electroencephalogram (EEG) studies focus exclusively on the feedback-related negativity (FRN, also known as feedback negativity or FN, medial-frontal negativity or MFN, feedback error-related negativity or fERN, and reward positivity or RewP). This component is usually measured approximately 200-300 ms post-feedback at a single electrode in the frontal-central area (e.g., Fz or FCz). The present review argues that this singular focus on the FRN fails to leverage EEG's greatest strength, its temporal resolution, by underutilizing the rich variety of event-related potential (ERP) and EEG time-frequency components encompassing the wider temporal heterogeneity of reward processing. The primary objective of this review is to provide a comprehensive understanding of often overlooked ERP and EEG correlates beyond the FRN in the context of reward processing with the secondary goal of guiding future research toward multistage experimental designs and multicomponent analyses that leverage the temporal power of EEG. We comprehensively review reward-related ERPs (including the FRN, readiness potential or RP, stimulus-preceding negativity or SPN, contingent-negative variation or CNV, cue-related N2 and P3, Feedback-P3, and late-positive potential or LPP/slow-wave), and reward-related EEG time-frequency components (changes in power at alpha, beta, theta, and delta bands). These electrophysiological signatures display distinct time-courses, scalp topographies, and reflect independent psychological processes during anticipatory and/or outcome stages of reward processing. Special consideration is given to the time-course of each component and factors that significantly contribute to component variation. Concluding remarks identify current limitations along with recommendations for potential important future directions.
Individuals who suppress their emotions experience less positive emotions, worse relationships, and a reduced quality of life whereas those who tend to reappraise show an opposite pattern. Despite this divergent pattern, few have asked how the use of these emotion-regulation strategies relates to reward responsivity. We predicted that elevated suppression would be associated with blunted reward responsivity, whereas reappraisal would be associated with elevated reward responsivity. To test this hypothesis, participants completed a measure of individual differences in emotion-regulation strategies, measures of self-reported reward responsivity, and then a reward time-estimation task (Kotani et al., 2003) while electroencephalography (EEG) was recorded. Results revealed that individual differences in cognitive reappraisal were unrelated to self-report measures of reward responsivity, whereas suppression was associated with blunted reward responsivity. At the neural level, reappraisal was associated with greater attention to the rewarding cues, as indexed by the P300 event-related potential (ERP) component, whereas suppression was related to blunted reward anticipation, as indexed by the stimulus-preceding negativity (SPN) ERP component. Suppression prospectively predicted worse psychological well-being 2.5 years later and blunted neural reward anticipation partially explained this association. Taken together with past research, these results suggest reappraisal tendencies may lead to better outcomes due, in part, to enhanced reward responsivity, whereas the negative consequences of suppression may be associated with blunted reward responsivity.
Previous work shows that when an image of a face is presented immediately prior to each trial of a speeded cognitive task (face-priming), the error-related negativity (ERN) is upregulated for Asians, but it is downregulated for Caucasians. These findings are consistent with the hypothesis that images of "generalized other" vary cross-culturally such that they evoke anxiety for Asians, whereas they serve as safety cues for Caucasians. Here, we tested whether the cross-cultural variation in the face-priming effect would be observed in a gambling paradigm. Caucasian Americans, Asian Americans, and Asian sojourners were exposed to a brief flash of a schematic face during a gamble. For Asian Americans, face-priming resulted in significant increases of both negative-going deflection of ERP upon negative feedback (feedback-related negativity [FRN]) and positive-going deflection of ERP upon positive feedback (feedback-related positivity [FRP]). For Caucasian Americans, face-priming showed a significant reversal, decreasing both FRN and FRP. The cultural difference in the face-priming effect in FRN and FRP was partially mediated by interdependent self-construal. Curiously, Asian sojourners showed a pattern similar to the one for Caucasian Americans. Our findings suggest that culture shapes neural pathways in both systematic and highly dynamic fashion.
Renewed interest in classic psychedelics as treatments for psychiatric disorders warrants a deeper understanding of their neural mechanisms. Single, high doses of psychedelic drugs have shown promise in treating depressive disorders, perhaps by reversing deficits in reward processing in the brain. In addition, there are anecdotal reports that repeated ingestion of low doses of LSD, or "microdosing", improve mood, cognition, and feelings of wellbeing. However, the effects of low doses of classic psychedelics on reward processing have not been studied. The current study examined the effects of two single, low doses of LSD compared to placebo on measures of reward processing. Eighteen healthy adults completed three sessions in which they received placebo (LSD-0), 13 μg LSD (LSD-13) and 26 μg LSD (LSD-26) in a within-subject, double-blind design. Neural activity was recorded while participants completed the electrophysiological monetary incentive delay task. Event-related potentials were measured during feedback processing (Reward-Positivity: RewP, Feedback-P3: FB-P3, and Late-Positive Potential: LPP). Compared to placebo, LSD-13 increased RewP and LPP amplitudes for reward (vs. neutral) feedback, and LSD-13 and LSD-26 increased FB-P3 amplitudes for positive (vs. negative) feedback. These effects were unassociated with most subjective measures of drug effects. Thus, single, low doses of LSD (vs. placebo) increased three reward-related ERP components reflecting increased hedonic (RewP), motivational (FB-P3), and affective processing of feedback (LPP). These results constitute the first evidence that low doses of LSD increase reward-related brain activity in humans. These findings may have important implications for the treatment of depressive disorders.
Prior work shows that people respond more plastically to environmental influences, including cultural influences, if they carry the 7 or 2‐repeat (7/2R) allelic variant of the dopamine D4 receptor gene (DRD4). The 7/2R carriers are thus more likely to endorse the norms and values of their culture. So far, however, mechanisms underlying this moderation of cultural acquisition by DRD4 are unclear. To address this gap in knowledge, we tested the hypothesis that DRD4 modulates the processing of reward cues existing in the environment. About 72 young adults, preselected for their DRD4 status, performed a gambling task, while the electroencephalogram was recorded. Principal components of event‐related potentials aligned to the Reward‐Positivity (associated with bottom‐up processing of reward prediction errors) and frontal‐P3 (associated with top‐down attention) were both significantly more positive following gains than following losses. As predicted, the gain‐loss differences were significantly larger for 7/2R carriers than for noncarriers. Also, as predicted, the cultural backgrounds of the participants (East Asian vs. European American) did not moderate the effects of DRD4. Our findings suggest that the 7/2R variant of DRD4 enhances (a) the detection of reward prediction errors and (b) controlled attention that updates the context for the reward, thereby suggesting one possible mechanism underlying the DRD4 × Culture interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.