Sensitivity information is often of interest in engineering applications (e.g., gradient-based optimization). Heat transfer problems frequently involve complicated geometries for which exact solutions cannot be easily derived. As such, it is common to resort to numerical solution methods such as the finite element method. The semi-analytic complex variable method (SACVM) is an accurate and efficient approach to computing sensitivities within a finite element framework. The method is introduced and a derivation is provided along with a detailed description of the algorithm which requires very minor changes to the analysis code. Three benchmark problems in steady-state heat transfer are studied including a nonlinear problem, an inverse shape determination problem, and a reliability analysis problem. It is shown that the SACVM is superior to the other methods considered in terms of computation time and sensitivity to perturbation size.
This paper describes the development and application of a Generic Control Allocation Toolbox developed at NASA Langley Research Center (LGCAT) intended to aid engineers during the preliminary design phase of an aerospace vehicle. The static controllability space in the forms of a Theoretical Attainable Moment Set, Φ, or Theoretical Attainable Force Set, φ is difficult to visualize for modern vehicles with multiple types of redundant control effectors. The objective of LGCAT is to provide system engineers and designers early in the vehicle design phase with quick insights on how control effector parameters such as quantity, sizing, location, orientation, redundancy, etc., affect the overall controllability and other performance metrics. Having such information in hand allows system engineers to make more informed decisions on overall mission objectives such as performance vs. reliability vs. cost, etc. early in a vehicle design phase and reduce the number of iterations necessary in the design and analysis cycles.LGCAT can accept a variety of control effector types including aerodynamic surfaces, rotors, thrust vector control (TVC) engines, and reaction control systems (RCS).LGCAT is MATLAB based, user friendly, and is capable of performing the analysis in the Graphical User Interface (GUI) or script mode. Current add-on features include interfacing with engineering level codes such as Vehicle Sketch Pad (VSP) and generating the corresponding Φ and φ for an arbitrary vehicle design. These capabilities potentially make LGCAT an integral part of the preliminary design phase for any vehicle. * Aerospace Engineer, Vehicle Analysis Branch
The National Airspace System (NAS) must be improved to increase capacity, reduce flight delays, and minimize environmental impacts of air travel. NASA has been tasked with aiding the Federal Aviation Administration (FAA) in NAS modernization. Automatic Dependent Surveillance-Broadcast (ADS-B) is an enabling technology that is fundamental to realization of the Next Generation Air Transportation System (NextGen). Despite the 2020 FAA mandate requiring ADS-B Out equipage, airspace users are lacking incentives to equip with the requisite ADS-B avionics. A need exists to validate in flight tests advanced concepts of operation (ConOps) that rely on ADS-B and other data links without requiring costly equipage. A potential solution is presented in this paper. It is possible to emulate future data link capabilities using the existing in-flight Internet and reduced-cost test equipment. To establish proof-of-concept, a high-fidelity traffic operations simulation was modified to include a module that simulated Internet transmission of ADS-B messages. An advanced NASA ConOp, Flight Deck Interval Management (FIM), was used to evaluate technical feasibility. A preliminary assessment of the effects of latency and dropout rate on FIM was performed. Flight hardware that would be used by proposed test environment was connected to the simulation so that data transfer from aircraft systems to test equipment could be verified. The results indicate that the FIM ConOp, and therefore, many other advanced ConOps with equal or lesser response characteristics and data requirements, can be evaluated in flight using the proposed concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.