In 1912, Max Wertheimer published his paper on phi motion, widely recognized as the start of Gestalt psychology. Because of its continued relevance in modern psychology, this centennial anniversary is an excellent opportunity to take stock of what Gestalt psychology has offered and how it has changed since its inception. We first introduce the key findings and ideas in the Berlin school of Gestalt psychology, and then briefly sketch its development, rise, and fall. Next, we discuss its empirical and conceptual problems, and indicate how they are addressed in contemporary research on perceptual grouping and figure-ground organization. In particular, we review the principles of grouping, both classical (e.g., proximity, similarity, common fate, good continuation, closure, symmetry, parallelism) and new (e.g., synchrony, common region, element and uniform connectedness), and their role in contour integration and completion. We then review classic and new image-based principles of figure-ground organization, how it is influenced by past experience and attention, and how it relates to shape and depth perception. After an integrated review of the neural mechanisms involved in contour grouping, border-ownership, and figure-ground perception, we conclude by evaluating what modern vision science has offered compared to traditional Gestalt psychology, whether we can speak of a Gestalt revival, and where the remaining limitations and challenges lie. A better integration of this research tradition with the rest of vision science requires further progress regarding the conceptual and theoretical foundations of the Gestalt approach, which will be the focus of a second review paper.
Although numerous studies have measured the strength of visual grouping cues for controlled psychophysical stimuli, little is known about the statistical utility of these various cues for natural images. In this study, we conducted experiments in which human participants trace perceived contours in natural images. These contours are automatically mapped to sequences of discrete tangent elements detected in the image. By examining relational properties between pairs of successive tangents on these traced curves, and between randomly selected pairs of tangents, we are able to estimate the likelihood distributions required to construct an optimal Bayesian model for contour grouping. We employed this novel methodology to investigate the inferential power of three classical Gestalt cues for contour grouping: proximity, good continuation, and luminance similarity. The study yielded a number of important results: (1) these cues, when appropriately defined, are approximately uncorrelated, suggesting a simple factorial model for statistical inference; (2) moderate image-to-image variation of the statistics indicates the utility of general probabilistic models for perceptual organization; (3) these cues differ greatly in their inferential power, proximity being by far the most powerful; and (4) statistical modeling of the proximity cue indicates a scale-invariant power law in close agreement with prior psychophysics.
Abstract-The standard approach to edge detection is based on a model of edges as large step changes in intensity. This approach fails to reliably detect and localize edges in natural images where blur scale and contrast can vary over a broad range. The main problem is that the appropriate spatial scale for local estimation depends upon the local structure of the edge, and thus varies unpredictably over the image. Here we show that knowledge of sensor properties and operator norms can be exploited to define a unique, locally computable minimum reliable scale for local estimation at each point in the image. This method for local scale control is applied to the problem of detecting and localizing edges in images with shallow depth of field and shadows. We show that edges spanning a broad range of blur scales and contrasts can be recovered accurately by a single system with no input parameters other than the second moment of the sensor noise. A natural dividend of this approach is a measure of the thickness of contours which can be used to estimate focal and penumbral blur. Local scale control is shown to be important for the estimation of blur in complex images, where the potential for interference between nearby edges of very different blur scale requires that estimates be made at the minimum reliable scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.