Tractography based on diffusion tensor imaging (DTI) allows visualization of white matter tracts. In this study, protocols to reconstruct eleven major white matter tracts are described. The protocols were refined by several iterations of intra-and inter-rater measurements and identification of sources of variability. Reproducibility of the established protocols was then tested by raters who did not have previous experience in tractography. The protocols were applied to a DTI database of adult normal subjects to study size, fractional anisotropy (FA), and T 2 of individual white matter tracts. Distinctive features in FA and T 2 were found for the corticospinal tract and callosal fibers. Hemispheric asymmetry was observed for the size of white matter tracts projecting to the temporal lobe. This protocol provides guidelines for reproducible DTI-based tract-specific quantification.
Cholinergic neuron loss is a cardinal feature of Alzheimer disease. Nerve growth factor (NGF) stimulates cholinergic function, improves memory and prevents cholinergic degeneration in animal models of injury, amyloid overexpression and aging. We performed a phase 1 trial of ex vivo NGF gene delivery in eight individuals with mild Alzheimer disease, implanting autologous fibroblasts genetically modified to express human NGF into the forebrain. After mean follow-up of 22 months in six subjects, no long-term adverse effects of NGF occurred. Evaluation of the Mini-Mental Status Examination and Alzheimer Disease Assessment Scale-Cognitive subcomponent suggested improvement in the rate of cognitive decline. Serial PET scans showed significant (P < 0.05) increases in cortical 18-fluorodeoxyglucose after treatment. Brain autopsy from one subject suggested robust growth responses to NGF. Additional clinical trials of NGF for Alzheimer disease are warranted.
Positron emission tomography of cerebral glucose metabolism in adult human subjects was used to investigate amygdaloid complex (AC) activity associated with the storage of long-term memory for emotionally arousing events. Subjects viewed two videos (one in each of two separate positron emission tomography sessions, separated by 3-7 days) consisting either of 12 emotionally arousing film clips ("E" film session) or of 12 relatively emotionally neutral film clips ("N" film session), and rated their emotional reaction to each film clip immediately after viewing it. Three weeks after the second session, memory for the videos was assessed in a free recall test. As expected, the subjects' average emotional reaction to the E films was higher than that for the N films. In addition, the subjects recalled significantly more E films than N films. Glucose metabolic rate of the right AC while viewing the E films was highly correlated with the number of E films recalled. AC activity was not significantly correlated with the number of N films recalled. The findings support the view derived from both animal and human investigations that the AC is selectively involved with the formation of enhanced long-term memory associated with emotionally arousing events.
In this study the location of dopamine (DA) neuron perikarya in the rostral mesencephalon of the rat was determined using the glyoxylic acid fluorescence histochemical technique. Subsequently the topography of the projection of these mesencephalic neurons on the basal forebrain and striatum was analyzed using the anterograde transport-autoradiographic tracing method and the retrograde transport-horseradish peroxidase (HRP) technique. The results of these anatomical studies were correlated with the biochemical and histochemical studies presented in previous reports (Moore, '78; Fallon and Moore, '78; Fallon et al., '78) to provide the following conclusions. The topography of the DA neuron projection of the basal forebrain and neostriatum is organized in three planes, dorsal-ventral, medial-lateral and anterior-posterior. DA cells are found almost exclusively in the substantia nigra (SN) and ventral tegmental area (VTA). Ventral cells of the SN and VTA project to the dorsal structures of the basal forebrain such as the septum, nucleus accumbens and neostriatum. The latter includes some DA cells located ventrally in the pars reticulata of the SN. Dorsal cells project to ventral structures. The medial-lateral topography is organized such that the medial sectors of the SN-VTA area project to the medial parts of nuclei in the basal forebrain and neostriatum whereas lateral sectors of the SN-VTA area project to the lateral parts of nuclei in the basal forebrain and neostriatum. An anterior-posterior topography also is evident such that anterior parts of the SN-VTA project anteriorly whereas the posterior SN-VTA projects more posteriorly in these areas. These observations are consistent with the view that the DA neurons of the SN-VTA complex form a single nuclear group with a highly topographically organized projection innervating not only deep nuclei of the telencephalon but allocortical structures as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.