Increased endothelial cell (EC) permeability is central to the pathophysiology of inflammatory syndromes such as sepsis and acute lung injury (ALI). Activated protein C (APC), a serine protease critically involved in the regulation of coagulation and inflammatory processes, improves sepsis survival through an unknown mechanism. We hypothesized a direct effect of APC to both prevent increased EC permeability and to restore vascular integrity after edemagenic agonists. We measured changes in transendothelial electrical resistance (TER) and observed that APC produced concentration-dependent attenuation of TER reductions evoked by thrombin. We next explored known EC barrier-protective signaling pathways and observed dosedependent APC-mediated increases in cortical myosin light chain (MLC) phosphorylation in concert with cortically distributed actin polymerization, findings highly suggestive of Rac GTPase involvement. We next determined that APC directly increases Rac1 activity, with inhibition of Rac1 activity significantly attenuating APC-mediated barrier protection to thrombin challenge. Finally, as these signaling events were similar to those evoked by the potent EC barrier-enhancing agonist, sphingosine 1-phosphate (S1P), we explored potential cross-talk between endothelial protein C receptor (EPCR) and S1P 1 , the receptors for APC and S1P, respectively. EPCR-blocking antibody (RCR-252) significantly attenuated both APC-mediated barrier protection and increased MLC phosphorylation. We next observed rapid, EPCR and PI 3-kinase-dependent, APCmediated phosphorylation of S1P 1 on threonine residues consistent with S1P 1 receptor activation. Co-immunoprecipitation studies demonstrate an interaction between EPCR and S1P 1 upon APC treatment. Targeted silencing of S1P 1 expression using siRNA significantly reduced APCmediated barrier protection against thrombin. These data suggest that novel EPCR ligation and S1P 1 transactivation results in EC cytoskeletal rearrangement and barrier protection, components potentially critical to the improved survival of APC-treated patients with severe sepsis.
The pulmonary epithelium serves as a barrier to prevent access of the inspired luminal contents to the subepithelium. In addition, the epithelium dictates the initial responses of the lung to both infectious and noninfectious stimuli. One mechanism by which the epithelium does this is by coordinating transport of diffusible molecules across the epithelial barrier, both through the cell and between cells. In this review, we will discuss a few emerging paradigms of permeability changes through altered ion transport and paracellular regulation by which the epithelium gates its response to potentially detrimental luminal stimuli. This review is a summary of talks presented during a symposium in Experimental Biology geared toward novel and less recognized methods of epithelial barrier regulation. First, we will discuss mechanisms of dynamic regulation of cell-cell contacts in the context of repetitive exposure to inhaled infectious and noninfectious insults. In the second section, we will briefly discuss mechanisms of transcellular ion homeostasis specifically focused on the role of claudins and paracellular ion-channel regulation in chronic barrier dysfunction. In the next section, we will address transcellular ion transport and highlight the role of Trek-1 in epithelial responses to lung injury. In the final section, we will outline the role of epithelial growth receptor in barrier regulation in baseline, acute lung injury, and airway disease. We will then end with a summary of mechanisms of epithelial control as well as discuss emerging paradigms of the epithelium role in shifting between a structural element that maintains tight cell-cell adhesion to a cell that initiates and participates in immune responses.
The mechanisms behind the loss of epithelial barrier function leading to alveolar flooding in acute lung injury (ALI) are incompletely understood. We hypothesized that the tyrosine kinase receptor human epidermal growth factor receptor-2 (HER2) would be activated in an inflammatory setting and participate in ALI. Interleukin-1 (IL-1) exposure resulted in HER2 activation in human epithelial cells and markedly increased conductance across a monolayer of airway epithelial cells. Upon HER2 blockade, conductance changes were significantly decreased. Mechanistic studies revealed that HER2 trans-activation by IL-1 required a disintegrin and metalloprotease 17 (ADAM17)-dependent shedding of the ligand neuregulin-1 (NRG-1). In murine models of ALI, NRG-1-HER2 signaling was activated, and ADAM17 blockade resulted in decreased NRG-1 shedding, HER2 activation, and lung injury in vivo. Finally, NRG-1 was detectable and elevated in pulmonary edema fluid from patients with ALI. These results suggest that the ADAM17-NRG-1-HER2 axis modulates the alveolar epithelial barrier and contributes to the pathophysiology of ALI. Acute lung injury (ALI)3 is a severe clinical disorder with an annual incidence of ϳ200,000 and a mortality of 40% in the United States (1). Most commonly seen in the setting of sepsis (2-4), ALI is marked by disruption of the alveolar barrier, leukocyte activation, release of inflammatory cytokines, and hypercoagulability. The net effect is an increase in alveolar epithelial permeability, resulting in alveolar flooding with proteinrich edema and life-threatening hypoxemia (5). An intact epithelial barrier is essential to maintaining normal pulmonary fluid balance. Indeed, damage to the endothelium alone is insufficient to cause pulmonary edema, whereas epithelial injury results in severe lung injury (6 -8). The epithelium provides a greater resistance to proteins and fluid than the capillary endothelium and is responsible for the active ion transport-dependent removal of edema fluid from the distal air spaces of the lung (9 -11).The tyrosine kinase receptor human epidermal growth factor receptor-2 (HER2) is expressed by pulmonary bronchial epithelial cells and is involved in multiple physiologic processes, including cell proliferation and wound repair. The HER receptor family consists of four type 1, membrane-bound tyrosine kinase receptors: HER1 or epidermal growth factor receptor (EGFR), HER2, HER3, and HER4 (12). HER2 has no known ligand and requires partnering with another HER family member for activation. HER2 and 3 are highly expressed in pulmonary bronchial epithelial cells (compared with HER1 and 4) (13). HER3 is the receptor for the ligand neuregulin-1 (NRG-1), but HER3 has no intrinsic signaling properties (14). Upon NRG-1 binding, HER3 heterodimerizes with HER2, resulting in activation of the HER2 tyrosine kinase domain, HER2 autophosphorylation, and initiation of downstream intracellular signaling cascades (13). NRG-1 is expressed in bronchial epithelial cells (13,15,16) and is shed from the cell ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.