We examined the effects of fish predation on emergent insect-mediated methyl mercury (MeHg) flux across a gradient of MeHg contamination in experimental ponds. Emergent insects were collected from ponds with (n = 5) and without fish (n = 5) over a six week period using floating emergence traps. We found that the potential for MeHg flux increased with Hg contamination levels of the ponds but that the realized MeHg flux of individual insect taxa was determined by fish presence. Fish acted as size-selective predators and reduced MeHg flux by suppressing emergence of large insect taxa (dragonflies and damselflies) but not small insect taxa (chironomids and microcaddisflies). MeHg flux by small insect taxa was correlated with concentrations of MeHg in terrestrial spiders along the shorelines of the study ponds, demonstrating for the first time the cross-system transport of MeHg by emergent insects to a terrestrial spider.
CMAJ 2007;176(1):59-63 (reference range < 50) nmol/d. The patient was not reassured by these results, since he found the different reference ranges used by the 2 laboratories confusing.Case 3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.