3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors are effective agents in lowering cholesterol and triglycerides and are being used by human immunodeficiency virus-positive patients to treat the lipid elevation that may be associated with antiretroviral therapy. Many HMG-CoA reductase inhibitors and protease inhibitors are metabolized by the same cytochrome P450 enzyme 3A4 (CYP3A4). In addition, many protease inhibitors are potent inhibitors of CYP3A4. Therefore, coadministration of these two classes of drugs may cause significant drug interactions. This open-label, multiple-dose study was performed to determine the interactions between nelfinavir, a protease inhibitor, and two HMG-CoA reductase inhibitors, atorvastatin and simvastatin, in healthy volunteers. Thirty-two healthy subjects received either atorvastatin calcium (10 mg once a day) or simvastatin (20 mg once a day) for the first 14 days of the study. Nelfinavir (1,250 mg twice a day) was added on days 15 to 28. Pharmacokinetic assessment was performed on days 14 and 28. The study drugs were well tolerated. Nelfinavir increased the steady-state area under the plasma concentration-time curve during one dosing period (AUC ) of atorvastatin 74% and the maximum concentration (C max ) of atorvastatin 122% and increased the AUC of simvastatin 505% and the C max of simvastatin 517%. Neither atorvastatin nor simvastatin appeared to alter the pharmacokinetics of nelfinavir. It is recommended that coadministration of simvastatin with nelfinavir should be avoided, whereas atorvastatin should be used with nelfinavir with caution.
Disulfiram and its reduced metabolite diethyldithiocarbamate have been identified previously as selective mechanism-based inhibitors of human liver microsomal cytochrome P450 2E1 in vitro. In animals, a single oral dose of disulfiram has been shown to produce a rapid and selective inactivation of hepatic P450 2E1 content and catalytic activity in vivo. This investigation explored the efficacy of single dose disulfiram as an inhibitor of human P450 2E1 activity in vivo. Clinical P450 2E1 activity was assessed by the 6-hydroxylation of chlorzoxazone, a metabolic pathway catalyzed selectively by P450 2E1. Six healthy volunteers received 750 mg oral chlorzoxazone on two occasions in a crossover design, 10 hours after 500 mg oral disulfiram, or after no pretreatment (control subjects). Disulfiram pretreatment markedly decreased chlorzoxazone elimination clearance to 15% of control values (from 3.28 +/- 1.40 to 0.49 +/- 0.07 ml/kg/min, p < 0.005), prolonged the elimination half-life (from 0.92 +/- 0.32 to 5.1 +/- 0.9 hours, p < 0.001), and caused a twofold increase in peak plasma chlorzoxazone concentrations (20.6 +/- 9.9 versus 38.7 +/- 10.3 micrograms/ml, p < 0.001). Disulfiram also profoundly decreased the formation clearance of 6-hydroxychlorzoxazone, from 2.30 +/- 0.93 to 0.17 +/- 0.05 ml/kg/min (p < 0.005). These findings show that a single dose of disulfiram significantly diminishes the activity of human P450 2E1 in vivo. The efficacy of single-dose disulfiram as an inhibitor of human P450 2E1 suggests that this modality for manipulating clinical P450 2E1 activity may provide a useful probe for delineating P450 2E1 participation in human drug biotransformation or for the treatment of poisoning by P450 2E1-activated toxins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.