Structure-specific synthesis processes are of key importance to the growth of polymorphic functional compounds such as TiO2, where material properties strongly depend on structure as well as chemistry. The robust growth of the brookite polymorph of TiO2, a promising photocatalyst, has been difficult in both powder and thin-film forms due to the disparity of reported synthesis techniques, their highly specific nature, and lack of mechanistic understanding. In this work, we report the growth of high-fraction (~95%) brookite thin films prepared by annealing amorphous titania precursor films deposited by pulsed laser deposition. We characterize the crystallization process, eliminating the previously suggested roles of substrate templating and Na helper ions in driving brookite formation. Instead, we link phase selection directly to film thickness, offering a novel, generalizable route to brookite growth that does not rely on the presence of extraneous elements or particular lattice-matched substrates. In addition to providing a new synthesis route to brookite thin films, our results take a step towards resolving the problem of phase selection in TiO2 growth, contributing to the further development of this promising functional material.
Crystalline TiO2 films of anatase, brookite, and rutile are reproducibly made from amorphous precursors deposited by RF magnetron sputtering, producing large-area, single phase films of uniform thickness. Sputtered amorphous TiO2 precursor thin films follow the general behavior observed for amorphous precursor thin films generated by pulsed laser deposition, namely, that oxygen deficiency is necessary for the formation of brookite and rutile. We quantify the oxygen deficiency and correlate it with the long wavelength optical absorption. We find that the precursor deposition rate is also a contributing factor to phase selection and that brookite and rutile form from films deposited more rapidly and anatase from films deposited more slowly. Sputtered and pulsed laser deposited amorphous precursor films prepared with similar oxygen deficiency and similar thickness result in the same final state after annealing, but the rate for sputtered precursors is slower.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.