A natural number N is said to be palindromic if its binary representation reads the same forwards and backwards. In this paper we study the quotients of two palindromic numbers and answer some basic questions about the resulting sets of integers and rational numbers. For example, we show that the following problem is algorithmically decidable: given an integer N , determine if we can write N = A/B for palindromic numbers A and B. Given that N is representable, we find a bound on the size of the numerator of the smallest representation. We prove that the set of unrepresentable integers has positive density in N. We also obtain similar results for quotients of antipalindromic numbers (those for which the first half of the binary representation is the reverse complement of the second half). We also provide examples, numerical data, and a number of intriguing conjectures and open problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.