The surface code is a leading candidate quantum error correcting code, owing to its high threshold, and compatibility with existing experimental architectures. Bravyi et al. (2006) showed that encoding a state in the surface code using local unitary operations requires time at least linear in the lattice size L, however the most efficient known method for encoding an unknown state, introduced by Dennis et al. (2002), has O(L2) time complexity. Here, we present an optimal local unitary encoding circuit for the planar surface code that uses exactly 2L time steps to encode an unknown state in a distance L planar code. We further show how an O(L) complexity local unitary encoder for the toric code can be found by enforcing locality in the O(logL)-depth non-local renormalisation encoder. We relate these techniques by providing an O(L) local unitary circuit to convert between a toric code and a planar code, and also provide optimal encoders for the rectangular, rotated and 3D surface codes. Furthermore, we show how our encoding circuit for the planar code can be used to prepare fermionic states in the compact mapping, a recently introduced fermion to qubit mapping that has a stabiliser structure similar to that of the surface code and is particularly efficient for simulating the Fermi-Hubbard model.
The notion of a joint system, as captured by the monoidal (a.k.a. tensor) product, is fundamental to the compositional, process-theoretic approach to physical theories. Promonoidal categories generalise monoidal categories by replacing the functors normally used to form joint systems with profunctors. Intuitively, this allows the formation of joint systems which may not always give a system again, but instead a generalised system given by a presheaf. This extra freedom gives a new, richer notion of joint systems that can be applied to categorical formulations of spacetime. Whereas previous formulations have relied on partial monoidal structure that is only defined on pairs of independent (i.e. spacelike separated) systems, here we give a concrete formulation of spacetime where the notion of a joint system is defined for any pair of systems as a presheaf. The representable presheaves correspond precisely to those actual systems that arise from combining spacelike systems, whereas more general presheaves correspond to virtual systems which inherit some of the logical/compositional properties of their "actual" counterparts. We show that there are two ways of doing this, corresponding roughly to relativistic versions of conjunction and disjunction. The former endows the category of spacetime slices in a Lorentzian manifold with a promonoidal structure, whereas the latter augments this structure with an (even more) generalised way to combine systems that fails the interchange law.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.